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Dynamic M-Shell Effects in the Ultraviolet Absorption Spectrum
of Metallic Potassium
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The filled M shell of potassium, set into oscillation by the electric field of a photon, leads to inter-
band transitions that explain a large absorption peak at 8 eV. Interference between this collective
perturbation and the ordinary A p coupling (between a photon and conduction electron) shows
that the sign of the Vllo pseudopotential is negative,

PACS numbers: 78.20.—e, 32.30.Jc, 32.80.—t, 78.65.Ez

Twelve years ago &hang, Arakawa, and Callcott'
discovered a large ultraviolet absorption near 8 eV in
metallic potassium. Their data are shown in Fig. 1,
which includes the Drude absorption (below 1 eV) and
the Wilson-Butcher interband peak at 2 eV. Explana-
tion of the ultraviolet peak, which also occurs in Rb
and Cs, ' has remained elusive. Hermanson showed
that it could not be attributed to plasmons; and an at-
tempt with a limited-basis-set, tight-binding model for
the conduction band (instead of a nearly free-electron
one) led only to a weak and highly structured absorp-
tion.

We show here that the absorption in K near 8 eV
arises from a collective contribution to the ordinary in-
terband matrix element. It is caused by the interaction
of a conduction electron with the dynamic oscillation
of the eight M-shell electrons. A nearly free-electron,
pseudopotential approximation is the method we em-
ploy.

The periodic pseudopotential acting on a conduction
electron can be divided into two parts:

Vl is the inner ion-core potential, caused by the nuclei
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FIG. l. Experimental, room-temperature, absorption
spectrum of potassium. The rise below 1 eV is the Drude
absorption. The Wilson-Butcher interband peak is at 2 eV.
Data are from Ref. 1.

eik r [ V / gr(k) ]ei(k+G) r (5)

where Vt to is the G Fourier coefficient of V(r), Eq.
(1). 8'(k) is the transition energy:

W'(k) =E (k+ G) —E (k).
The final-state wave function is

ei(k+G) r+ [V /W(k)]eik r

(6)

The time-dependent perturbation which connects (5)
to (7) arises from the A p coupling with the photon
and also from the oscillatory part, 4 V~, of the M-shell
potential (2), having Fourier periodicity G:

b, V~ = VMG e'G'( —iaG Sinr0t ). (8)

and their ten tightly bound E- and L-shell electrons.
We shall take VI to be the Coulomb potential of a stat-
ic bcc array of point ions, each having charge 9e. VM
is the pseudopotential of the M shells. In the electric
field of a photon, described by a vector potential
A'xcoscot, the eight M-shell electrons (on each ion)
undergo a coherent oscillation of amplitude a. Ac-
cordingly, the static VM must be replaced by a dynamic
one:

VM(r) V~(r —axsincot). (2)

The shell model of Dick and Overhauser4 can be
used (with Newton's second law) to calculate the am-
plitude of the oscillation, x = a singlet:

Smx = —Sm coMx —(Sero/c )A sincot.

8m'~ is the shell-model spring constant; its value will

be discussed below. The amplitude which satisfies Eq.
(3) is

a = coeA/mc (ro' —roM2).

The shell mode1 should be app1icable as long as co is
small compared to co~.

In the nearly free-electron model, optical absorption
is attributed to transitions (in the extended-zone
scheme) from k to k+ G, as shown in Fig. 2. Consid-
er one of the [110] reciprocal-lattice vectors, G, and
take it to be along x. The initial-state wave function,
corrected to first order in the pseudopotential, is
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phenomenon between the two contributions. This ef-
fect will permit an experimental determination of the
sign of V»0, the potential which causes energy gaps at
the Brillouin-zone boundary.

We now turn to a discussion of the Fourier coeffi-
cients, V»0 and V~G. The Fourier-transform version
of Eq. (1) for the [110] reciprocal-lattice vector G is

V»0 VMG + VIG.

The magnitude of V»0, estimated by an analysis of de
Haas-van Alphen data, is

V& io 02 eV. (12)
We have inserted the negative sign as a consequence
of our conclusion below. Since G is here the smallest
reciprocal-lattice vector, we may take the inner-ion-
core term (charge = 9e ) to be (0 is the atomic
volume)—0.5 0 0.5 I .0 I,5 2.0 2.5

k(A')
FIG. 2. Interband transitions from occupied states of the

Fermi sphere to empty, excited states. The wave-vector
change (A 8 or C D) is G, a [110] reciprocal-lattice
vector. The solid curve is the electronic E(k) given by Eq.
(18); the dashed curve is a free-electron parabola. A
Brillouin-zone boundary is shown.

This expression is the leading term in an expansion of
exp [iG (r —a x since t ) ] in powers of a. Higher
Fourier components of VM affect absorption only
above 20 eV. Optical transitions arise from (the
positive-frequency part of) the total perturbation,

H'= (eA/mc)p„coscut —iaGVMG e' 'sint0t. (9)

—ef GA

2mcIV (g~M)2 —IV2
(10)

when we have used Eq. (4) and W'=tee is the transi-
tion energy. Note that both terms (in square brackets)
are real, so that there will be an interference

The first term is the only one that is usually con-
sidered. Collective effects, analogous to the second
term, have been discussed for atomic transitions, in a
time-dependent Hartree-Fock formalism, and usually
lead to only small corrections.

For alkali metals, the first term of (9), which causes
the Wilson-Butcher interband peak, is small because
p„connects the large term of (5) with the small term
of (7), and vice versa. Because of the factor
exp(i G r), the M-shell term of H' connects the large
terms of both (5) and (7). That is one reason why the
M-shell effect is relatively more important here. The
(positive-frequency) matrix element of H' between in-
itial and final states is

&k+GIH'Ik&

VtG = —367re /AG = —7.9 eV, (13)

&co~ = 26 eV. (IS)
We emphasize here that all of the parameters appear-
ing in the interband matrix element, Eq. (10), are
determined from independent experiments. (The vec-
tor potential 2, of course, disappears when the optica1
absorption is evaluated. )

The optical conductivity a- can be computed if we
equate the mean "Joule heating" to the golden-rule
transition-rate times 8' i.e.,

—,
' ~E'= 8 w [(2~/lr) (k+GIH'Ik)'t, ( w) ], (16)

since the form factor of the ten inner-core electrons is= 10 for wave vector G. It follows from Eqs. (11) to
(13) that

V~G = 7.7 eV. (14)
Note that VMG is 40 times larger than Vtto. From Eq.
(10) it is easy to understand why the oscillator strength
of the M-shell-mediated peak is 2 orders of magnitude
larger than the Wilson-Butcher one.

The only parameter of Eq. (10) that remains to be
determined is t0M which, from Eq. (3), is the resonant
frequency of the M-shell oscillation. For a free K+
ion, the shell-model spring constant4 can be found by
fitting the K+ polarizability, s n = 0.9&& 10 24 cm2.
This approach leads to a free-ion, M-shell resonance at
8m=31 eV. However, in the metal, this resonance
will be shifted to a smaller frequency as a result of in-
teraction of each M shell with the ionic potentials of
near neighbors. (There is also a small reduction from
the dielectric screening of the conduction electrons. )
A theoretical estimate of the shift is ——7 eV.9 How-
ever, it is not necessary to depend on such calcula-
tions, since the M-shell resonant frequency has been
measured for K by synchrotron-radiation absorption'o
and is
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where E is the peak electric field (coA/c) and p(8') is
the joint density of states (per spin). The factor 8 in-
cludes a factor 2 for spin and a factor, 12(cos20),„=4,
to account for the twelve [110] G's and their average
polarization factor. (8 is the angle between x and G.)
Accordingly, the optical conductivity is

8net .G
V110 + VMG

m IV (tco M ) —W

(17)
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This result reduces to Butcher's formula if the M
shells are rigidly bound (toM = ~ ), and if p ( W) is cal-
culated from Eq. (16) with E=f 2k2/2m.

Band calculations" show that E (k) is not free-
electron-like beyond the (first) Brillouin zone. There-
fore we use an E(k) which behaves appropriately
beyond k = G/2. We accomplish this with the follow-
ing heuristic function:

1+() ()8uE=
2m 1+0.55u 2 (18)

where u = (2k/G) —1. The u in the denominator
provides a "sag" which allows E (k) to "fit" the band
calculations in the second zone. The u 4 in the
numerator enables E(k) to resume its parabolic course
for larger k. The function given by Eq. (18) is shown
in Fig. 2. The sag at k = 6, relative to the free-
electron parabola (also shown), is —4 eV. Such a
value is consistent with the band structure.

Since E(k), given by Eq. (18), cannot be factored
into x, y, and z components, p(co) must be calculated
numerically. The resulting o-(co) is shown in Fig. 3.
The observed Drude absorption has been added to Eq.
(17) in order to facilitate comparison with the experi-
mental spectrum of Fig. 1. The M-shell-mediated ab-
sorption (taken alone) is the curve having V»11 ——Q.

Comparison of the other two curves, with V&~0= + 0.2
eV, shows the extraordinary interference effect
between the A p interaction and the dynamic M-shell
potential. It is obvious that V~&0 must be negative.
Most pseudopotential form factors, V(q), found in
the literature, though negative for small q, change sign
and are positive at q = G. One notable exception is the
nonlocal potential of Rasolt and Taylor, ' which
remains negative.

The small value of a. near 4 eV (for the solid curve
of Fig. 3) is caused by exact cancellation of the two
terms in the matrix element (10). Only the Drude tail
contributes at 4 eV. This is an artifact caused by our
neglect of damping. The conduction electrons (under-
going interband transitions) will exert a reaction force.
A small phase shift relative to the M-shell oscillation
will then prevent the interference dip near 4 eV from
being so dramatic.

The remarkable agreement in the height and width
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FIG. 3. Theoretical optical-absorption spectrum of potas-
sium computed from Eq. (17), for three values of the pseu-
dopotential V~ID. The experimental Drude absorption has
been added. The peak at 8 eV is caused by the M-shell-
mediated photon-electron interaction.

0

of the 8-eV peak leaves little doubt that the dynamic
M-shell mechanism is responsible. The only adjusted
parameters were those in Eq. (18), which affect some-
what the energy of the ultravolet peak. It seems likely
that dynamic polarization will be important in the
vacuum-ultraviolet spectra of other materials.
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