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Monte Carlo Renormalization-Group Study of the Dynamics of an Unstable State
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The kinetics of an order-disorder transition is studied by Monte Carlo renormalization-group
methods. The block-spin transformation acts to renormalize both the growing domains and the
moving interfaces separating them. After several iterations, the growth is found to be self-similar
under a simultaneous rescaling of space and time. The growth law for the average size of domains
is then determined by a matching condition. Good agreement with the results of previous studies is
obtained.

PACS numbers: 64.60.My, 05.50.+q, 64.60.Cn

The Monte Carlo renormalization-group method has
proved useful in the study of second-order phase tran-
sitions. ' 6 It was originally introduced by Ma, ' and
then developed and extended by Swendsen3 and other
workers4 to a variety of equilibrium problems. Tobo-
chink, Sarker, and Cordery, 4 and others, 5 6 have used
the technique to study dynamical critical behavior.
Their method, which we will extend below, involves
matching correlation functions on different sized lat-
tices at different levels of renormalization. Near the
second-order transition, matching determines the
dynamical critical exponent. We should note, howev-
er, that the usefulness of Monte Carlo renormal-
ization-group methods for those problems remains
controversial, as a result of the lack of an exact non-
trivial result to test the method.

A related problem where a renormalization-group
approach could be useful is the far-from-equilibrium
dynamics of pattern formation in a first-order phase
transition. 7 " There, following a rapid quench from a
disordered state to a low temperature, domains form
which grow as time evolves. Experiments9 and com-
puter simulations'0 find that the growth process in-
volves a characteristic time-dependent length, the
average size of domains R (t), to which the spatial
dependence of quantities scales. Furthermore, R
often satisfies (at least approximately) a power-law
form, R (t) —t".

While these results are quite reminiscent of critical
phenomena, it has not been possible to develop a
first-principles renormalization-group approach for this
class of problems to date. To our knowledge, the first
attempt was by Langer and Bar-on' who studied spi-
nodal decomposition. Later, Kawasaki' studied the
scaling solution of the Allen-Cahn equation for inter-
facial dynamics, where the scalar order parameter is
nonconserved. By far, the most successful approach
using renormalization-group ideas, however, has been
given recently in a series of papers by Mazenko and
Valls. They do not consider a Wilson-type renormali-
zation group. Instead they consider the behavior of
finite-size systems embedded in an "infinite" lattice.
Monte Carlo simulations are then used both to verify a

scaling relation for the average domain size and to
determine the time rescaling factor defined through
this relation. Then, they iteratively solve a recursion
relation for the structure factor which they have pro-
posed, using the time rescaling factor previously calcu-
lated. They find their results to be in reasonable
agreement with Monte Carlo simulations. Given the
success of their analysis, it is of interest to carry out an
explicit standard application of a Wilson renormaliza-
tion group.

In this Letter, we extend the Monte Carlo
renormalization-group approach' 6 to study the far-
from-equilibrium kinetics of pattern formation in a
first-order phase transition. In contrast to critical
dynamics, here there is a well-established result in the
literature which serves to check the validity, self-
consistency, and accuracy of the method, that being
n = —,

' for the nonconserved Ising model. Consequent-

ly, we consider here the kinetic Ising ferromagnet with
spin-flip dynamics in dimension d = 2. The block-spin
transformation, which explicitly renormalizes the
domains as well as the moving interfaces, is used to
obtain the growth exponent n. Our result, n =0.500,
is in agreement with previous theoretical, "experimen-
tal, and computer simulation' studies. This shows
that a block-spin renormalization group can be used to
study this class of far-from-equilibrium problems.

It is clear from Fig. 1 that, after renormalization, the
system is similar to itself at an earlier time. This is the
familiar self-similarity seen in evolving phase-
separating systems: The system is approximately in-
variant under a change of length scales, given a corre-
sponding change in time scales. The relationship
between both is the growth law.

This is the scale invariance which we will exploit by
the renormalization-group transformation. Before we
discuss our treatment in detail, it is useful to discuss
the flow of coupling constants under renormalization.
Here we follow the description of Mazenko and Valls. 8

After m renormalizations, two sets of coupling con-
stants, K; and Kf™,characterize the equilibrium
states at times t=0 and t=~, respectively. Since we
quench from above the critical point to below, the
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FIG. 1. The spin configurations on the left-hand side
show the N = 128 system being renormalized at time
t=100 Monte Carlo steps. On the right-hand side, con-
figurations for the N = 642 system, as it is renormalized, are
shown for t = 25 Monte Carlo steps.

direction of flow as m increases is evident: The initial
coupling constants will eventually fiow to the trivial
infinite-temperature fixed point, while the final cou-
pling constants will flow to the trivial fixed point at
zero temperature. That is, as m ~, we would ob-
tain K =0 and K& =~. Thus, in contrast to critical
phenomena, the dynamics here involves stable, attrac-
tive fixed points. %'hile the Hamiltonian of the sys-

tern is driven to the low-temperature fixed point, we
note that, also, as m ~ the renormalized time
t t ~i 0. Roughly speaking, the renormalization-
group transformation takes the system back to the ini-
tial condition, as can be seen in the results obtained
for the average domain size. Thus, the asymptotic
scaling regime involves time in a nontrivial way. Also,
because of the flow of coupling constants the thermal
correlation length g will be an irrelevant variable, in
marked contrast to critical phenomena. Since g 0
under renormalization, the motion of the system sim-
plifies to that of a more idealized system: the dynam-
ics of very thin independent interfaces.

We now give a detailed description of our analysis.
The reduced Hamiltonian for the two-dimensional Is-
ing model is 8= —Kg&;J&o-, ~i, where the sum runs
over distinct nearest-neighbor pairs and the N spins
can take the values ~;= +1. After a quench from in-
finite temperature to low temperature Ef ', the sys-
tem evolves by the standard Metropolis spin-flip
Monte Carlo procedure. The unit of time is a Monte
Carlo step which consists of N random attempts to up-
date spins. The average size of domains (measured as
the inverse perimeter density) is R (r) = 2/(2+ e),
where e = —(1/N) (X(;i)o;oi) .-The unrenormalized
m =0 systems consist of lattices of size N = 642 (at
temperatures Kf '=0.75 and 0.9), and N= 1282 (at
E& ' = 1).'4 To obtain the best possible statistics,
1000 runs were done at each of the temperatures for
the 642 system and 750 for the 1282 system. In studies
of this kind, '0 finite-size effects become apparent for
R ) 0.4~N. Thus our results are based on the first
400 Monte Carlo steps for the N = 1282 system and
the first 100 Monte Carlo steps for the N = 642 system.

Renormalized lattices were obtained by majority-
rule block-spin transformation of the evolving spin
configurations. "Ties" were broken by randomly as-
signing block spins the value +1. The typical results
of blocking, in groups of four spins is shown in Fig. 1.
After m renormalizations there are Nb d block spins
on the new lattice, where the length rescaling factor is
chosen to be b = 2. To obtain the growth law we have
extended the matching procedure used by Tobochnik,
Sarker, and Cordery4 for critical dynamics. In princi-
ple, after the irrelevant variables have been iterated
away, the probability distribution will remain invariant
under the renormalization-group transformation. It is
expected, then, that after a finite number of iterations
(say m) the irrelevant variables will have essentially
disappeared. Thus, any quantity determined after m
blockings of X spins will be identical to that deter-
mined after m+ I blockings of Nb" spins. However,
since the time scale in the bigger lattice has been re-
normalized once more all quantities will be at different
times t and t'. R (N m, t) =R (Nb, m +1,t'). This is
the matching condition. The ratio of the times, t'/t,
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give the time rescaling factor, b'~", resulting from the
length rescaling b given by the renormalization group.
Thus, by matching we can determine the growth law.
We note that it is essential that matching occurs for
more than one value of m to ensure that the renormal-
ized probability distributions, p(m) and p(m+1), are
tracking each other. '

The exponent n can now be estimated by requiring
precise matching, i.e., by considering a given time on
one lattice and then finding the time on the other lat-
tice with the same value of R. It is essential that the
exponent obtained remains stationary after iteration.
This is the case here after the first level of renormali-
zation. The next three levels give essentially the same
value for n, which is a direct consequence of the scale
invariance of the system under the simultaneous re-
scaling of space and time. The results we obtain from
estimating the exponent in this manner are 0.510,
0.497, and 0.501 (for Kf '=0.90), and 0.499, 0.492,
and 0.499 (for Kf '=0.75). The average of these

values is's n =0.500+0.015 which is in agreement
with the results of many other studies. 9 " The fifth
matching is bad because the systems have only 42

block spins (so finite-size effects become important or,
possibly, there is statistical error after many block-
ings) . '7

If now we assume that n = —,
' exactly, we obtain the

results given in Table I. There we compare the value
of R on the N = 1282 system after (m+ 1) blockings
at time tb' o 5 to the value on the smaller lattice after m

blockings and at time t. This is done to show, explicit-
ly, the result of the renormalization-group transforma-
tion. We again see there how the matching is bad after
the first level improves, and is reasonably good during
three more iterations. We have two additional re-
marks on the matching. For late times, t & 80 Monte
Carlo steps for the N= 642 system, the matching gets
worse, which is a finite-size effect. We also note that,
even though the matching we obtain is quite reason-
able, we have not reached the limiting behavior

TABLE I. We compare the value of R (tb') for the 128' system every tenth Monte Carlo step (we have data for every five
Monte Carlo steps) and at different levels of renormalization (denoted K ) to the value of R (t) for the 642 system at levels
K + ~. The two different temperatures studied for the 64 system are written, top to bottom at a given time, E ' = 0.9 and
0.75, respectively. The percentage mismatch is shown, and given a sign. The estimated error in the data for R is less than 1/o.

R (K1) R (Ko) R (K2) R (K ) R (K3) R (Kz) R (K4) R (K3) % R (K5) R (K4)

10 26.470 28 304 6.9 7.609
29.618 11.9

7.572 -0.5 2. 528
7.720 1.5

2.610 3 3 1.342
2. 601 2. 9

1.355 1.0 1.167 1.0?9
1.344 0. 1 1.083

-7.5
7 ~ 2

20 51.867 57 077 10 0 14 371 14 277 0 7 4 215
59.707 15.1 14.463 0.6

4.332 2.8 1.723
4.318 2. 5

1.718 -0.2 1.218 1.176
1.718 -0.2 1.169

-3.4
-4.0

30 77. 112 85 114 10.4 21.211 20 876 -1.6 5.955
89.878 16.6 21.206 0.0

6.067 1.9 2. 136
6.102 2. 5

2. 137 0.0 1.311 1.262
2. 138 0. 1 1.223

-3 7
-6. 7

40 101.965 113.447 11.3 27. 833 27. 472 -1.3 7.662
120.150 17.8 28. 072 0.g

7 ' 796 1.8 2 ' 544
7.859 2.6

2. 581 1.5 1.445 1.327
2. 560 0. 7 1.311

-8.2
-9.3

127.168 140.641 10.6 34.706 34.032 -1.9 9.402
150.6gO 18.5 34.921 0.6

9.543 1.5 2. 952
9.680 3.0

2.990 1.3 1.512 1.397
3.011 2.0 1.406

-7.6
-7.0

152 520 168.434 10.4 41.380 40.451 -2. 2 11.166 11.255

181.gll 19.3 41.933 1.3 11.531
0.8 3.372
3.3

3 420 1.4 1.607
3.480 3.2

1.527
1.504

-5.0
-6.4

70 177+566 195e 523 10+1 48s190 46e987 —
~ 12e989 12o952 -Oe3 3@828

212.687 19.8 48. 706 1.1 13.307 2.4
3.810 -0.5 1.754 1.599
3.889 1.6 1.627

-8.8
-7.2

203. 777 222. 867 9.4 55. 179 53.205 -3.6 14.837 14.529 -2. 1 4. 347

242. 927 19.2 55. 509 0.6 15.072 1.6
4.239 -2.5 1.842 1.686
4. 326 -0.5 1.703

-8.5
-7.6
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governed by the stable fixed points, K = 0 and
KJ'=~. This is because R for the two N=642 sys-
tems (with quench temperatures Kf '=0.75 and 0.9)
should become identical there. Clearly, however, we
are quite close to that limiting behavior since we ob-
tain good matching. Compare, also, the two values of
R for the N = 642 system as we renormalize, at a given
time, in Table I.

Our results indicate that Wilson s first-principles re-
normalization group, as implemented by Monte Carlo
renormalization-group methods, can be applied to
study the decay of unstable states in first-order phase
transitions. Our work has not indicated any major dif-
ficulties with the method, other than the need for very
accurate statistics and care in interpretation of the
results. The method can be straightforwardly modified
to study other lattice-gas models with nonconserved
dynamics. In the future, we intend to apply this
method to obtain the scaling form of the structure fac-
tor and to study the related problem of spinodal
decomposition.
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