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Rigorous expressions are derived for the line shape for an isolated vibrational mode of an atom
or molecule adsorbed on a metallic surface in the presence of electron-hole damping. It is shown
that this mechanism necessarily produces an asymmetric line shape with long tails. The experimen-
tal presence or absence of such a line shape should therefore play an important role in establishing
whether or not electron-hole—pair production is an effective energy-transfer mechanism near me-

tallic surfaces.

PACS numbers: 68.30.+z, 71.35.+2z

One of the most important problems in surface
dynamics is to discover what mechanisms are responsi-
ble for energy transfer between an adsorbate or near
adsorbate and the host material. One such mecha-
nism, the excitation of electron-hole pairs in a metal
substrate, has received a great deal of attention recent-
ly,! and because of the partial breakdown of adiabatici-
ty which it implies, it is of interest in its own right.
However, solid evidence that this is ever the dominant
energy-transfer mechanism is sparse.

A particularly favorable case is the damping of ad-
sorbate vibrations.? Here one samples an almost har-
monic region of the ion potential and for modes of
much higher frequency than the phonon continuum,
the effects of phonon damping are minimized. One
also looks for an adsorbate whose lowest unoccupied
level is close to the Fermi level?; an electron in this
level of an otherwise neutral adsorbate induces an at-
tractive screening cloud in the substrate, so that typi-
cally this level will move downward as the adsorbate
approaches the surface; in the ideal situation a fairly
narrow virtual level on the adsorbate has considerable
overlap with the Fermi level. As the adsorbate vi-
brates, the position of this level also oscillates leading
to a breakdown of adiabaticity of order of wr where w
is the vibrational frequency and = ~— 1/I" is the tunnel-
ing rate, where I is the virtual level width (we choose
units where #=1). Calculations based on these as-
sumptions often produce vibrational decay rates y
which are of the same order as those observed experi-
mentally.>*3

It has apparently been assumed that the line shape
associated with this decay is a symmetric Lorentzian®
with a full width at half maximum equal to y. I show
here that, in fact, an inescapable consequence of the
electron-hole decay mechanism is that the line shape
(when measured by a probe that couples to the charge)
is asymmetric with contributions on a wider scale than
v; this asymmetry becomes greater as the nonadiabatic
effects that produce the width itself are increased, and
should be substantial if the standard picture (previous

paragraph) is correct. Thus if the experimentalists can
establish the existence or nonexistence of the type of
line shape predicted below, a definitive test of the
above picture in specific, and the electron-hole
mechanism in general, will be accomplished.

I begin by summarizing and explaining the results.
The line shape of a vibrational line in the presence of
electron-hole decay processes as measured by a
charge-coupled probe is given by the imaginary part of
a generalized susceptibility function

a=—upQw,)/(0®—ol+ioy), (1)

where w has been termed the ‘‘dynamic dipole’” of the
adsorbed molecule (or atom). In general w has two
components w=pu‘+ u€ where u' is the contribution
of the ion cores (or nuclei) and w is the valence elec-
tron (or all electron) contribution. The width y arises
because adsorbate electrons and holes can tunnel into
the substrate creating real electron-hole pairs. What
has not been generally realized, however, is that the
very process that allows a nonzero 7y also ensures that
w® has an imaginary part. It takes time for the elec-
trons to tunnel to the substrate so that the oscillations
of wfrom this source are necessarily out of phase with
the electric field that drives them. If we et
mw=m;+ur,=u;(1+iw7), then (1) becomes

a=— (1) 20,1+ io7)Y(0*—wltivy). Q)
The line shape L (o) = + 2a; is then’
L(0)=[40,7(u)¥yI[(QA—x)¥y(Q1+x»)], 3)

where y =w7 and x = (w?—w})/yo. The expression
(3) applies to a single harmonic oscillator (mass M)
interacting bilinearly with an arbitrary interacting
charged Fermi system (mass m). All the frequency
dependence is shown explicitly (assuming that
m << M), that is w,, v, and 7 are constants, for which
we give exact expressions later.

We note that (3) is a generalization of the well-
known Fano line shape.? The latter applies when a vir-
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tual state, which decays into a single-particle continu-
um, is excited. Here one has an oscillator which is
damped by a particle-hole continuum. The depen-
dence of the variables x and y on frequency is different
from the Fano case, but the physical principle, as well
as the most important features of the line shape, are
the same.

We derive expressions for a reflectivity experiment,
although similar considerations would apply for elec-
tron energy loss. To lowest order in nonadiabaticity,
the effect of the p-polarized incident and reflected
waves is merely to set up a quasistatic’® E field which is
normal to the surface at large distances. We should
therefore calculate its value and spatial variation in the
region of the surface, and finally use this field to cal-
culate the power absorption due to the vibrational
mode in question. The change in reflectivity 8|R |?
due to this process is, to lowest order in g,

5|R|?=—16w[(gxn)¥(q-a)1(N/A)Ime, (4)

where 0 is a unit vector normal to the surface and q is
the wave vector of the incident radiation; (N/A4) is the
number of adsorbate molecules (atoms) per unit area
and o is a generalized ‘‘polarizability’’ of the system
consisting of one adsorbate molecule plus the host sys-
tem. Equation (4) applies in the zero coverage limit;

at finite coverage, one must set N =1 in (4) and calcu-
late o for the N-molecule-substrate system. In either
case « is given by

a= —fd3x fd3x’ﬁ-x8><(x, X, w)i- X, ©))

where 8X is the change in the charge-density response
function of the system (including adsorbate) when the
vibrational mode under consideration is unfrozen.
The response function 8X has several pieces

OX=08Xp_o+dX,_;+0X,_.+0X;_,, (6)
where in a transparent notation e stands for electron

and i for ion (or nucleus). One easily finds® (assuming
harmonicity!) that

3X_i(x,x,0)=8p;(x)8p,;(x')D(w), @)
where
D(w)=2w,/(0*—w?+ioy). (8)

Here 8p;(x) is the change in the ionic charge density
when the normal coordinate Q increases by an amount
80 equal to its transition matrix element, that is
1/(2Mw,)"?, w, is the fully renormalized Born-
Oppenheimer vibration frequency, M is the effective

1 reduced mass, and the decay rate vy is given by
y=J @ [ @x's v (0 [—2ImX, (x, X, 0,) 18 VEE (X)), ©)

where 8 V*° is the fully screened change in the electron-ion potential corresponding to a change 3 Q in the normal
coordinate. X, is the (electronic) charge-density response function in the absence of vibrations, and X, is its ir-
reducible part, that is, the response to a fully screened potential. Only the term « w in ImX, need be retained. In a
one-electron approximation Eq. (9) reduces to Persson and Hellsing’s® Eq. (1). If we divide « into four pieces as
we did 8X in (6), then we have

a;_i=—(u)?D(w), (10)
where
u’=fd3x8p,~(x)ﬁ'x 11)

is the transition dipole of the nuclear motion.
The other terms in (6) are of the same form as (7), thatis,

X . (X, X, 0)=8p;(x)8p,. (X', w)D(w), (12)

and similarly for the other two terms. Here 8p,(x’, w) is the electronic charge density induced at x when the nor-
mal coordinate Q vibrates at amplitude 8 Q and frequency w. We must keep the frequency dependence in dp, to
order w just as we did in the normal mode self-energy to obtain y. Therefore defining w® by

Me=fd3x8pe(x,w)ﬁ'x (13)

and substituting in (5), we immediately obtain Eq. (1), where u =+ % this is the desired result. However, ex-
act expressions for 8p, and hence ©¢ can be immediately written down:

3pe (X, w) =fd3x’fd3x” X, (X, X', 0)|x —x"| " 18p,;(x). (14)
If we separate real (« »®) and imaginary (« w!) parts w =+ in,, then
pi=— f @x d(x)8p,(x) (15)
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and
wo(w) = —fd3xfd3x’<b(x) [ImX,(x, X', w) 18 Vs(x'), (16)

where ®(x) is a fully (statically) screened version of the scalar potential —fi - x [® would be the true potential in
the solid if it were placed in a constant and uniform (at o) electric field of unit magnitude; ® would then give the
true local electric field in the sample through E= —V®]. Note the similarity between Eqgs. (9) and (16). They
each represent the same physical process and both must be included if one is to consistently add corrections to the
adiabatic approximation. Equation (16) when evaluated in the single-particle approximation becomes

a(@) =270 [ &x [Bx P03, wiGOw(x) [BVP(x), a7

ke =¢€p

where s, is the one-electron wave function and ®% and & V'*P are the full single-particle potentials [which include
the possibility for a scattered electron to exchange with one in the screening cloud] corresponding to ® and & V'*°.

I would guess that Eq. (17) is suitable for numerical evaluation in simple cases by groups®? that have already
evaluated a similar expression for y. Here I simply follow Persson and Persson* and assume that a single adsorbate
molecule can be desribed by an Anderson-type resonant level model. The adsorbate contribution to the electronic
charge response in this model is

Xo(x,x)=—e%p,(ep) [1+ iwwpa(eF)]2i|¢i(X) 12l¢; (x) |+ O (w?), (18)

where ¢;(x) is the orbital wave function for the ith I
degenerate localized orbital and p,(eg) is the adsor- which are assumed), then defining
bate density of states (of a single orbital). Since this

model is incapable of giving the correct substrate 7= fu)7, (26)
charge distribution (even its integral is wrong!), we we see that 7,=wp,(eg) ~1/T. The constraints of
follow Persson and Persson* and pick our origin on the  the model allow 7 to be either positive or negative,
image plane (of the substrate) which we assume is the
mean position of all induced substrate charge. Then
letting 8e = [@Px 8 V*(x)|¢;(x)|? (which is assumed T 7T T 1
independent of orbital by symmetry) and 05 |- —
g=3 [dxen-xle, ()2 19 5 oo /
i=1 =)
we find immediately that §-0-5 ~ (b) n
[1 <4
pf=—mdepy(ep), (20) 10| .
pr=—mdempl(ep)w, (1) <
I L1 I
y=27w,(8€)2 ¥ p2(ep). (22) -4 -2 o 2 4
. (w-w,)(2/7)
Combining (20) and (22) gives r
y=2mw, N (uf/r)? (23) LA B T
1.0
which is essentially Persson and Persson’s result.* We dd (a)
obtain in addition 'ZD'
>
po/uf=mp,(ep)w. (24) Eo.s
In general, the = in Eq. (2) is given by 7= (u,/ ’E-i—é
miw) = (u§/ 1) (uo/usw) so that in this model <
7= (uf/u)7p,(ep). (25) 0o b—L—~1—=L o > "
If T/2 is the virtual level width (half width at half (w-w,)(2/7)
maximum) whose position is ~TI'/2 above eg (which FIG. 1. Plot of the (a) line shape according to Eq. (3) and
is required for the nonnegligible nonadiabatic effects (b) its second derivative for w,7=0.13 and y/w, << 1.
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depending whether the extra contribution to w; which
we have called u{ is parallel or antiparallel to u.

We now specialize to the case of CO on Cu(100). In
this case’ w,=0.25 eV and Persson and Persson* and
Ryberg!® have argued that u$/u;=(+0.12 D)/
(+0.22 D)=0.54, and in particular that u$/u; (and
hence 7) is positive. If 1/7,~1 eV which might be
typical!l of a narrow resonance near the Fermi level,
one obtains an asymmetry parameter w,7= +0.13. In
Fig. 1 I plot the resulting line shape and its second
derivative. The predicted asymmetry is obviously sub-
stantial, and not in agreement with experiment.® In
fact the slight asymmetry of the experiment? in the oth-
er direction suggests that uf and w; have opposite signs
and that 7, is somewhat smaller.

In summary, 1 have suggested an asymmetry
mechanism which is necessarily present whenever
electron-hole—pair creation contributes to the line-
width. Although other mechanisms such as inhomo-
geneous broadening are capable of producing asym-
metric lines, these are not expected to produce the
long tails of the present mechanism. Therefore the
positive experimental identification of the line shape
(3) for vibrational lines well above the phonon contin-
uum would be strong evidence of the importance of
electron-hole—pair creation.
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