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Effective-Action Expansion in Perturbation Theory
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I present a systematic method for the development of the effective-action expansion in perturba-
tion theory. The multiderivative terms beyond the effective potential can be evaluated in a direct
and simple manner relying only on the familiar momentum space and Feynman propagator. I have
used the self-coupled scalar field to explain the details of this new formulation. The effective-
action expansion for this model in the one-loop approximation is evaluated up to the terms contain-
ing four derivatives. This method can be readily generalized to other models with spins and inter-
nal symmetries.

PACS numbers: 11.10.Ef, 03.65.Db, 03.70.+k, 11.10.Lm

It has always been an important problem in physics
to extract the dominant contribution of the short-
distance effects on the large-distance behavior. A clas-
sical example is the multipole expansion. In the local
relativistic quantum field theory the short-distance ef-
fects are mostly due to quantum fluctuations. In the
low-energy limit, short-distance effects are not ex-
plored in detail. Typical examples are the effects of
heavy particles, confining particles, and quantum fluc-
tuation of the light particles. It is more convenient to
eliminate those degrees of freedom not directly ob-
servable and incorporate their effects into an effective
action of the observable fields. The expansion of this
necessarily nonlocal effective action into an infinite
series of local actions in the order of the number of
space-time derivatives is known as the effective-action
expansion.

This effective-action expansion is best formulated in
the functional integral method in which the unob-
served fields are integrated out. The calculation of the
effective potential, which is the leading term of the ex-
pansion with no derivative, is well known. However,
the multiderivative terms in the expansion have been
investigated only in a very limited way. There is no
simple, systematic method to develop the series of the
effective-action expansion. In the standard calcula-
tion, it requires that either the fields or the derivatives
of the fields are constant. This procedure would even-
tually lead to unacceptable consequences technically
and conceptually. Ilipoulos, Itzykson, and Martin in-
troduced an alternative method and succeeded in ob-
taining the next term of the expansion containing two
derivatives in the @4 theory. s However, their methods
are too complicated to be generalized systematically
for higher-order terms of the expansion. Recently
phenomenological Lagrangians containing four deriva-
tives, such as the Skyrme model and the Wess-Zumino
term, have been instrumental in opening up a new
direction of baryon physics. It is possible that these
extra four-derivative terms can be obtained from an
effective-action expansion. 3 7 8 9 To answer this and
other interesting questions it becomes necessary to

develop a better treatment for the effective-action ex-
pansion.

In this paper, I shall present a systematic method for
the effective-action expansion which can be applied to
any given theory. Since the most crucial development
of the method can be appreciated without the unneces-
sary complication of spins and internal symmetries, I
shall use the self-coupled neutral scalar theory in D
dimensions to facilitate the presentation. The
effective-action expansion up to the terms containing
four derivatives will be evaluated in the one-loop ap-
proximation. The basic procedures can easily be
adapted to other theories.

For the purpose of calculating the effective action
the observable fields can be treated as the background
fields. The unobservable fields are integrated out in
the functional path-integral method by use of the
steepest-descent approximation. Their effects are felt
only through their Green's function, which appeared
in the loop integration. The problem of finding the
effective-action expansion is reduced to finding solu-
tion of the Green's function as a functional of the
background fields. The crucial development of this
paper is the discovery of the simple formal solution of
this Green's function in the momentum space. It has
the identical form as the Green's function in the pres-
ence of constant background fields except that the
background fields are allowed to vary and the argu-
ment of the background field is replaced by x+ i 8/9p.
The expansion of this formal solution of the Green's
function in the power series of i 8/Bp generates natur-
ally the effective-action expansion.

Now I give the detailed calculation for the self-
coupled neutral scalar theory defined by the Lagrangi-
an

~= —,
' (t)„4)2——,

' m24 —V(4) + counterterms.

It is convenient to perform the Wick rotation into the
Euclidean space, Lo —iXD and to adapt the Euclide-
an metric (1,1,1,1). Throughout this paper, with the
exception of the final form of the effective action, the
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calculation is carried out exclusively in the Euclidean
space. The subscripts (ij,k, . . . = 1, . . . ,D are used
for the Euclidean subscripts. The counterterms are
understood to be present in the appropriate places.

The semiclassical approximation is obtained by ap-
plying the steepest-descent method to the functional
integral

with the normalization constant N and the action I [4&]

defined by

I [4& ] = J dDx {—,
' (ae )'+ —,

' m'4'+ V(C ) ) .

This action can be expanded around the classical path
$(x) at which the action is stationary,

C (x) = @,(x) + cu (x),

where @,(x) satisfies the equation

( —e'+m')@, (x)+ V(O, ) =0.
I[4] becomes

I[4]= I[@,]+ d x{—,'o) [ —8 + m2 V"(@,)]o)+ —,
' V"'(@,)o)3+ —,', V""(@,)co4+. . .),

and the functional integral changes into fD [cu]. . . . The effective action I«r[C ] is defined by

Z = N„i D [cu ] exp( —I [@,+ co ]/t ) = N' exp [ —cu (@,) ] = N' exp( —I«f [P ]/t )

where @ is defined by

fD [&5]@(x)e l@l~» fD [a)]co exp( —I[/, +cu]/t)
@(x)= fD [4 ]e '~'~» ' fD [co]exp( —I[@,+ co]/t)

=@,+

This relation can be inverted to give @,= @,($). The resulting effective action is

I«r[$] = I[@]+zt TrlnG + 8t „t d x V'"'(@(x))[G(x,x)]2

2

J"d x d y V'"(@(x))[G(x,y)]'V"'(@(y))+ O(t'),

where the Euclidean Green's function G (x,y) is defined by

{—~'+ U(4(x))) G(xy) =ha(x —y)
and

U(@(x))= m + V"(e(x)).

(2)

It is now clear that the semiclassical expansion in the order of h is equivalent to the perturbation expansion in
the order of the number of the closed loop. The calculation of the effective action is reduced to solving the
Green's function G(x,y) as a function of the background field U(@(x)) in Eq. (3).

Equation (3) can be solved symbolically,

G(xy) = JI dDp(2~) De» ~[ g2+ U(x)]- e- ~ x

where U(x) = U($(x)). Since [ —ill, xk] = —ihrke0, it is not possible to replace —6 by p (unless the field is
constant). However, this procedure can be fully justified if x is also replaced by i 8/Bp simultaneously while
operating on e

G(xy) =J d p(2~) e' '
[p + U(i rl/Bp)] 'e

A more useful form can be obtained by use of the property of finite translation from e

G(xy) =„, dDp(2m) e '~' ~ ~~[p2+ U(x+i 8/Bp)] (5)

Equation (5) is the formal solution of Eq. (3). It is quite apparent that the arguments leading to the solution Eq.
(5) are completely independent of the particular form of the Green's function, Eq. (3). Therefore with proper
care of the inverse operation the solution Eq. (5) can be generalized to incorporate the spin and internal sym-
metries by allowing G and U to be matrices in the corresponding spaces,

G(xy) = JI d p(2n. ) e '~'' [G '(p; U(x+i 6/Bp))] (6)

Substituting Eq. (5) into Eq. (2), I obtain the effective Lagrangian through the identification
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I fr[a] = —fd x~,rr,

$2~„,(~) =~(@)——,JI ~U(x) G(xx) —,V" (@(x))[G(xx)]'

+
12

V""(p(x))„~ D D
p'+ Ux+idp dq

q + Ux+i
q

+ O(~'). (7)& V"" @ x —i (p+q)~+ Ux —ip+q p+q
Manipu»tions similar to those used for obtaining the formal solution Eq. (S) have been applied for deriving the
last term of Eq. (7). I have also used the identity G (x x) = 5 Tr lnG '/p U(x).

The effective Lagrangian and therefore the effective-action expansion can be obtained directly by expanding the
form» expression of Eq. (7) in power series of the momentum derivative operators such as i (1/Qp. Thus

G(x,x) = JI p~+ U +i
2w p

dp 1
- - 1[8 BU()]lb

(27r) p'+ U(x) =0 „=i n! " '"
Bp;,

9 1

&p; p + U(x)

'm

It should be emphasized here that in this expansion 6/Bp; differentiates the entire expression to its right while the
spatial derivative rl; only differentiates the U(x) within the same square bracket.

The tensor structure of the momentum integrations can be treated easily by use of the standard symmetry argu-
ment. The remaining momentum integrations have the general form of

d p p ' U, „+Diq I (D/2+ s)I (n —s —D/2)
(2~) [p'+ U(x) ]" (4~) 'r(D/2)r(n)

It is more useful to reorder the series in Eq. (8) according to the number of derivatives occurring in each term.
After the Wick rotation back to the Minkowski space up to the terms containing four derivatives, G (x,x) becomes

G(x,x) = —(4 ) i II (1 —D/2) U '+ i ——,'I (3 —D/2) U + i d U+ —,', I'(4 —D/2) U +Di (BU)
—„', I (7 —D/2) U 7+ Di (d U) —„', I (4 —D/2) U 4+ i 84 U

+ —,', r(6 —D/2) U-'+ '[—'o.Ue, Ua.oi'U+ —,
' (O'U)(o U)']

——,', r (s —D/2) U-'+ i'[ —,', (a'U)'+ —,
' e„Ua~a'U+ —,', (a„a,U)']) .

The one-loop corrected effective Lagrangian can now be obtained by substitution of the result of Eq. (9) into Eq.
(7):

(@)=W(@)+ 't(4') i'[ I ( ——D/2) U i'+ ——' I (3 —D/2) U '+oi'(8 U)

——,', [ —,', I (6 —D/2) U + i (BU) + —,'I (4 —D/2) U +Di (Q (ipU)

+ —,'r(s —D/2) U-'+ i'e.ai'Ue. Ua, U]), (10)

where U = m~+ V" (Q (x) ) . Various forms of the
four-derivative terms are not independent since they
are related through integration by parts. In arriving at
Eq. (10) I have chosen to use a canonical form for the
2n-derivative terms so that for those derivatives
operating on the same U(x), (1) their number cannot
exceed n, and (2) they cannot contract with each oth-
er. If the third and the fourth derivatives on U, such
as appeared in Eq. (9), are discarded initially, it would
not be possible to arrive at the correct expansion of

I

Eq. (10) even though they do not appear explicitly in
Eq. (10).

The divergent parts of Eq. (10) are hidden in the r
function by the dimension regularization. In a renor-
malizable theory, V(@) should be chosen appropriate-
ly for the D dimensions such that the infinite parts can
be completely canceled by the counterterms. For the
D=4 dimension, V(Q) = (A/4!)@4. The finite part
[ir/4(4m. ) ] U ln(U/m ) is the well-known quantum
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contribution to the effective potenttal.
r

Z(@(x))=1+ r 3 ——UD/ 3(Z/')
1 2 (47r ) D/2

is in agreement with the result of Iliopoulos, Itzykson,
and Martin.

I have presented a systematic method for the
effective-action expansion and carried out the explicit
calculation for the self-coupled neutral scalar theory.
The effective-action expansion of the SU(N)

SU(N) a- model for one quark loop will be
presented in another paper in which I propose that
such an effective Lagrangian with a single parameter

can be used as a realistic model to understand the
low-energy dynamics of mesons and baryons. s My for-
mulation of the effective-action expansion is a natural
extension of the standard functional method approach
to the effective potential. The method relies only on
the familiar momentum space and Feynman propaga-
tor. As long as the preception persists that simplifica-
tion of fundamental interactions always occurs at
shorter distance, this tool will find numerous applica-
tions in understanding the low-energy phenomenolo-
gy.

After this work was completed, I learned that
Aitchison and Fraserto have also computed the effec-
tive expansion for the P4 theory. Our methods of cal-
culation are completely different.
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