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Vector-Meson Mass Generation by Chiral Anomalies
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We show that the chiral Schwinger model, which is anomalous, yields a consistent and unitary,
although not gauge-invariant, theory. The model is exactly solvable and contains a free massive
vector boson plus harmonic excitations.
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Quantum field theories with gauge couplings to chiral fermions can suffer from anomalous nonconservation of
the gauge current. This leads not only to loss of gauge invariance, but also threatens the existence of a consistent
theory. In particular, unitarity and renormalizability are called into question. The potential inconsistency arises
because the field equation for the gauge field tensor, F„,= B„A„—B„A„+lA „,A „],namely,

implies

D"J =D"D F =0
while at the same time, thanks to the anomaly,

[D"J„]'=+ (ih/24m') Tr[ T'B„e~ (B.A pA „+ —,' A.A,A, )], (3)

where T' are antiunitary fermion representation ma-
trices and D denotes covariant differentiation. The
conventional remedy for this problem is to adjust the
fermion content of the theory so that the trace in (3)
vanishes, thereby removing the anomaly. For the
standard electroweak theory, this criterion yields the
so-far successful prediction that the number of quarks
equals the number of leptons. 2 Another type of
remedy that has been used to deal with anomalies in-
volves modifying gauge field dynamics instead of fer-
mion content. In (2+ 1)-dimensional non-Abelian
theory with massless fermions, the gauge noninvari-
ance of the fermionic determinant can be compensated
for by the addition of a Chem-Simons term in the
gauge field action with half-integral coefficient. 4 In
four dimensions, a similar compensation is achieved
by adding scalar fields to the system, carrying a gauge
noninvariant, nonpolynomial Wess-Zumino term. 2 5

In all these modifications, gauge invariance is restored
to the theory by changing the original bosonic action,
although renormalizability in the presence of the non-
polynomial addition remains unclear.

In this Letter, we adopt an alternative approach. We
~ould like to consider an anomalous chiral gauge
model without changing its fermion content or making
ad Aoc changes in gauge field dynamics, and examine
whether, by simply giving up gauge invariance, a con-
sistent and unitary theory can be rescued from the
model. We have nothing to say about renormalizabili-
ty; indeed, we work in (1+1) dimensions, where we

!
show that the chiral Schwinger model [a U(1) gauge
field coupled to chiral fermions], although anomalous,
does yield a consistent unitary theory. We exploit the
fact that the fermionic determinant as well as the ano-
maly have some arbitrariness associated with the regu-
larization of fermionic radiative contributions. This
arbitrariness cannot be used, in this theory, to make
the current divergence free and restore gauge invari-
ance. But, we show that it can be used to define a uni-
tary theory with a consistent set of propagating solu-
tions to the field equations. The divergence of the
current (i.e., of the source for ri„F&"), although not
identically zero, vanishes by virtue of these Heisen-
berg field equations. There is then no inconsistency
between the analog of Eqs. (2) and (3) in this theory.
Further, the resulting theory has the spectrum of a
free massive vector particle plus massless harmonic
excitations. Thus, at least in this simple model, the
presence of the anomaly, together with the demand for
a consistent unitary theory with particle interpretation,
forces the spontaneous breaking of gauge symmetry
through the generation of a mass for the gauge boson.

The chiral Schwinger model is described by the ac-
tion

I =Jtd'x [ —,' F~"F„„+ty[tr)+ e—~~A(1+iq5)1$],

(4)

where y5=i y y . The fermionic determinant for this
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two-dimensional problem can be exactly evaluated, giving the gauge field an effective action

I (A) =„d2x —'F —Fl""+ A ag~" —(g" +e" ) (gP" —eP") A (5)

Ig(A) = —,JI d x A„M""A„. (6)

In (5), a is a constant not uniquely determined by the different procedures for calculating the fermionic deter-
minant since it governs a local contribution. We are free to choose it to suit our requirements on the theory. If
the model were not anomalous, a would have been fixed by gauge invariance. Here, no choice of a can restore
gauge invariance. Other considerations could be used to pick a. For instance, a = 0 is consistent with the fact that
the chiral fermions in Eq. (4) couple only to the combination (g~" —e"")A„, since i y"y5 ——e~"y, . The choice of
a =1 may be preferred on the mathematical grounds that it reduces the anomaly to the pure differential form
e&"B„A„,which descends through coboundary operations starting from the four-dimensional Pontryagin density. 6

We shall, however, leave a arbitrary and pursue the consequences. Notice that the nonlocal action (5) can be
written in local terms by introducing an auxiliary scalar field @(x),

exp[(i/t)Iz(A)] =
J [D&]exp[(i/t)S(A, @)], (7)

with

S(A, @)= JId x —,' F„„F""+——,
' (B„@)(B~@)+&he (g~" —e"")Q„@A„+,

' ate A A"—.

Equation (8) is just the bosonized version of the fermionic action (4), where the arbitrary constant a can be viewed
as reflecting bosonization ambiguities. The action (8) yields the following coupled field equations:

and

@= —elf B„(g~"—e"")A„

F&v jhe( vga +vs)g (j) ate Av

(9a)

On inserting (9a) into (9b), one gets

tl Flsv +ate 2A v te2(gva + &va) (gPP, &PP)A 0
Ijt (10)

Equation (10) also follows directly from the gauge field effective action (5). After a little algebra, Eq. (9) can be
seen to imply

( + m') (r (x) = 0,

where

m =te a /(a —1),
o-(x) = @(x) + h (x),

and

A „=—(1/ Jh ea) [8„@+ (1 —a) e„„B"@—a e„„B"h]. (12)

k k„1 1g,+, kk,a —1

lh

k2 m2

In (12), the function h is a harmonic function ( h = 0). Thus, we see that as long as a & 1, our system consists
of (i) a free massive degree of freedom described by the field a-, and (ii) harmonic excitations propagating on the
light cone, described by the field h. For later use, note that the combination F = e~" B„A„obeys the same free
massive Klein-Gordon equation (11) as obeyed by o-.

These conclusions can be confirmed by examining the propagator of this theory obtainable directly from the ac-
tion (5). The propagator G„„[the inverse of the operator —(i/t)M " in (6)], is, in momentum space,

(13)

The residue matrix of —iG„, at the pole k = m has two eigenvalues, one of which vanishes and the other is pos-
tive for a & 1. The residue matrix of the pole at k =0 also has one vanishing eigenvalue and another equal to
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(2/ha e )(ko+kt)z. This confirms that for a & 1,
the system is unitary and contains one massive free
degree of freedom, plus the massless excitations which
are self-dual in the sense that the associated pole is
really in (ko —kt). We presume that these are pairs of
unconfined fermions.

Note the following: (i) a =1 is a singular point
where the mass m diverges. The massive vector
meson disappears and one is left with just the harmon-
ic excitations. (ii) For a ( 1, the theory produces ta-
chyons and is not unitary. (iii) All values of a & 1

yield a sensible theory, so that the (mass) of the
gauge meson, m =Iie a /(a —1), is left undeter-
mined in this model and can lie anywhere between

4he~ and infinity. This is in contrast to the Schwinger
model, where gauge invariance fixes the constant a
and the gauge boson mass.

It is also instructive to consider the energy-mo-
mentum tensor for this system. Recall that for a free
massless Dirac field, the energy-momentum tensor
HP„"„can be written in terms of currents7:

The same form occurs in the matter portion of the
energy-momentum tensor for our system and the
current j" of Eq. (9b) appears. The symmetric
energy-momentum tensor obtained from the Lagrangi-
an in Eq. (8) is

II""= 8"@8"@+Wfe(A"t)"@+A"8"@)+tae A~A" —, g""(t)—@8@+tae A A +2JheA 8 @)

+ [ Fu~F ~ + ' gi ~F'~PF ] (15)

Upon using the field equations (9) and their solution (12), the above can be written as

8&"=m z[j "j"——,
' g""j j ]+ [ —F" F" + —,'g""F PF p]+ [r)1"h t)"h ——,g""8 h 8 h ].

The second term is the gauge field contribution, while the third term represents the harmonic excitations. The
first term, formed from currents, and the last arise from the matter portion of (15). The first two terms can be
combined by use ofj "=B„F4"= e "~B„Fto obtain finally an expression in which the single massive excitation F is
seen explicitly:

g~"=m z[ti&F "r)"F—g""(—,
'

d F 8 F —' I F )]+ [8"—h rJ"h ——g""8 h 6 h] (17)
In four dimensions, as well as for non-Abelian
theories in two dimensions, the field equations are
nonlinear and we have not analyzed them. But note
that gauge invariance again cannot be maintained with
chiral fermions. Hence, gauge noninvariant mass con-
tact terms cannot be excluded and may generate a
mass for the vector meson, although the renormaliza-
bility of such a theory remains unclear. If our
mechanism can operate in physically relevant models,
it raises the intriguing possibility that the vector
mesons mediating weak interactions become massive
because the underlying gauge symmetry is "anom-
alously" broken by chiral fermions, which are decon-
fined.
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