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We consider the effect of inelastic scattering on tunneling resonances in one dimension using a
Breit-Wigner scattering formalism. We show that the peak transmission at resonance is decreased
by the ratio of the intrinsic resonance width to the inelastic-scattering rate. For disorder-localized
one-dimensional systems this predicts that resonant-tunneling conduction, in addition to variable-
range-hopping conduction, will be observable at temperatures below 0.01 K in present experimental

systems.
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The existence of scattering resonances in particle
collisions is a fundamental feature of quantum theory
and has long been used as a probe of the internal
energy-level structure of atomic and subatomic parti-
cles. Recently Azbel and co-workers!=3 have made an
exciting suggestion: that the sharp structure found in
the conductance of quasi-one-dimensional systems as a
function of Fermi energy represents a resonant-
scattering process which probes the detailed energy-
level structure of a macroscopic solid. However, in
any resonant process the inverse resonance width sets
the time scale for the scattering event, and for the con-
jectured resonant-tunneling process this time scale is
very long. In a solid, inelastic processes due to ther-
mal fluctuations typically occur on a much shorter
time scale (even at low temperatures); therefore it is
crucial to have a theory of the effect of inelastic
processes on tunneling resonances in one dimension
(ID) in order to make sensible contact with experi-
ment. We propose such a theory below.

First, we briefly summarize the previous work on
this problem. Recently Fowler, Hartstein, and Webb*
and several other groups® succeeded in studying the
conductance, G, of very small MOSFET devices which
behave like twg-dimensional strips of length 10° A and
width — 300 A, and of variable electron density. At
the lowest temperatures (50 mK) they found that the
conductance of these devices varied nonmonotonically
over several orders of magnitude as a result of very
small changes in electron density (Fermi energy), and
that the structure disappeared around 1 K, but was
reproducible within a given sample. It was suggest-
ed!=3 that this structure arose from conduction elec-
trons resonantly tunneling through the localized states
of this disordered ‘‘wire.”” The zero-temperature
theory of the transmission resonances of noninteract-
ing electrons in a random potential was shown to
predict a reproducible structure which depended on
the particular impurity configuration of the sample!-®;

and recently’ a phenomenological extension of that
theory to finite temperature was proposed. Very re-
cently one of the authors’ showed that reproducible
structure with many of the features found in the ex-
periment could also be obtained by taking into account
finite-size fluctuations in the Mott variable-range-
hopping conduction through such small samples (and
ignoring resonant processes).

The theory we propose is also phenomenological®
but differs from that of Ref. 3 in an important feature
to be described below. The physical motivation of our
approach is the following. The simplest case of 1D
resonant transmission occurs when a particle of very
well-defined energy E, at zero temperature, is incident
upon two consecutive barriers of height much greater
than E, with a classically allowed region between them.
At almost all energies the particle is almost totally re-
flected, but in exponentially small energy intervals of
width I' (the leak rate out of the interior of the scatter-
er) the particle transmission is greatly enhanced. Be-
cause the spread in the incident particle’s energy must
be less than I" to see a strong resonance, its interaction
time with the scatterer cannot be less than ' ~!. Dur-
ing this interaction a relatively large electronic density
builds up in the allowed region between the barriers,
because the wave leaking through the first barrier is
constructively interfering with reflections off the
second barrier. The situation is exactly the same for a
scatterer consisting of many small barriers of random
height, except that the sequence of internal reflections
leading to constructive interference is much more
complicated. In this case a large electronic density
builds up in a disorder-localized resonant state of a 1D
resistor on a time scale 7, ~I'~!~ (27/Ae)exp(L/
L), where L is the sample length, L is the localiza-
tion length, and Ae is the spacing between resonances.
For the experimental system of Fowler, Hartstein, and
Webb one finds 7, > 0.01 s. However, for these sys-
tems at finite temperature there is certainly a compet-

1196 © 1985 The American Physical Society



VOLUME 54, NUMBER 11

PHYSICAL REVIEW LETTERS

18 MARCH 1985

ing conduction mechanism, variable-range hopping,®
which occurs on a much shorter time scale
Tm~ (1/wg)exp(Ty/ T)V2, where wg ! is a time on the
order of 10~ 13 sec. Imagine putting a field on the 1D
resistor at finite 7 on resonance. For times less than
7. the resonant density will build up in the scatterer
exactly as it would at zero 7. However, after a time 7,
the electron will scatter incoherently to another site
and the electronic density in the center of the sample
will never be able to build up to nearly its full resonant
density. Thus, the peak transmission at resonance will
be reduced by a factor 7,,/7,.

To make the argument quantitative we employ a for-
malism analogous to that used to derive the Breit-
Wigner formula, familiar in nuclear physics, for the
scattering cross section near resonance when several
decay modes (elastic and inelastic) are possible.l?
However, our derivation differs from the usual Breit-
Wigner result in two important ways. First, we are
considering a 1D scatterer with very low transmission
away from the resonance; thus the total scattering is
always large, but mostly backscattering (reflection),
and we must show that the forward scattering
(transmission coefficient) behaves like the cross sec-
tion in the Breit-Wigner formula. Second, our basic
result cannot depend on the assumption that the po-
tential is symmetric, which requires a significant gen-
eralization of the usual approach. Here, however, we
present only the details of the symmetric case for sim-
plicity.

We consider an arbitrary 1D scattering potential with
V(x)=V(—x), V(x— o) =0 and (outermost) clas-
sical turning points at + L. Any normalized solution
of the Schrédinger equation is fully determined by
specifying its logarithmic derivative at a point. There-
fore the logarithmic derivatives of two independent
solutions in the asymptotic region [|x|>> L,
V(x) = 0] in principle contain all the necessary infor-
mation about the behavior of the solutions inside the
scattering region as a function of energy. The idea is
to choose a basis where the logarithmic derivatives for
|x| >> L are slowly varying with energy, except at res-
onance, when the logarithmic derivative of one of the
solutions varies rapidly. Expansion of this logarithmic
derivative near the resonance energy will give the
behavior of the transmission coefficient near reso-
nance. For a symmetric V(x), the correct basis to
choose is the symmetric and antisymmetric states at
each energy. This is because the resonances are close-
ly related to the discrete eigenstates of the Schrédinger
equation with fixed boundary conditions at + L, which
have a definite parity if the potential is symmetric. At
most energies the parity eigenfunctions of our scatter-
ing problem have very little probability density inside
the scatterer; however, at a resonance the wave func-
tion with the appropriate parity is peaked within the
scattering region and has a shape similar to the corre-

sponding eigenstate of the discrete problem.

In general, all solutions have ¢ (x) = Je*+ Qe **
for x << — L and ¢ (x) =I'e”*+ O'e™ for x >> L.
Define the transfer matrix by

r 1
O/ =M 0:
where
—r/t 1/t
- l/l* —‘I'*/l* ’

and r and ¢ are the reflection and transmission ampli-
tudes for a wave incident from —oo. The symmetric
and antisymmetric solutions for |x| >> L are obtained
from the eigenvectors of this matrix with eigenvalues
+1. These states may be chosen to be ¥ 4(x)
=cos[kx—¢ + (E)] for x << — L, where exp(2i¢ +)
=r tt Therefore

t=3lexpid, ) —exp(2idp_)1]. (1)

The logarithmic derivatives '+ (x)/¢ + (x) are an-
tisymmetric so we need only consider them in the re-
gion x — —oco. We define, for x << — L,

_1_ lll’i(x)
ky+(x)

We can now express the transmission amplitude in
terms of b 4+ using (1) and (2),

o2 [ (1—iby )2 (1—ib_)?
2 | 1+82 1+ 52

Far from a resonance b . is a very slowly varying func-
tion of energy and from (1) we see ¢, —¢_
= |t| << 1, so that b, = b_. Assume that Eis near a
symmetric resonance, so that b, (E) varies rapidly
between =+ oo, while b_ remains constant. Since ¢ is
independent of x we can evaluate Eq. (3) anywhere in
the asymptotic region, and it is convenient to evaluate
it at a point xy which is a node of ¢ _ (x), so b_ is in-
finite. Then maximum resonance occurs at the energy
E, when b, is zero. We expand b, around E,,
by (E)=(9b/0E)(E—E,), and define the elastic-
resonance width I',=2/(9b/0E). Substitution into
(3) yields, near resonance,
2T (4)
(E-E)++il,

bs(x,E)=— =tanlkx—¢ + (E)]. (2)

(3)

t=iexp(2ikxy)

which is the usual result when only elastic decay is
possible.

We now allow for the possibility of inelastic decay
modes by assuming that the scattering potential has a
small constant imaginary part, +T;,'® which absorbs
part of the incident flux and causes a breakdown of
unitarity. Then the energy at resonance is shifted to
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E+ +iT'; and by Egs. (3) and (4), this gives an imag-
inary part to by, Im(b,)=T,/T,. Substituting this
into (3) yields
($T.)2
|e?= S (5)
(E—E)*+ (ir)

where the total decay width '=T,+T; and we now
must interpret ¢ in Eq. (3) as the elastic transmission
amplitude . We can calculate the total inelastic
scattering (reflection plus transmission) using

412+ 1 rlP=1= 1z~ Ir,|?

1
T I
_ 2 26 i 1 =, (6)
(E—E)*+(5T)
where the elastic reflection coefficient |r,|?=+

x |lexp(2i¢p 4 ) +exp(2i¢_)|?%, which can be evaluated
near resonance in the same manner as ¢, above. As-
suming the probabilities of inelastic forward and back-
scattering are equal, (5) and (6) give the total
transmission coefficient in the presence of inelastic
scattering as
ir,r
—1s]2 2 4"
T=141>+ 1z, E—E)+ (217 (7

The peak transmission is reduced in the presence of
inelastic scattering by I',/T", if I'; >>T,. The same
reduction of the peak transmission is obtained when
V(x) is asymmetric; the details of this argument will
be given elsewhere.!! Note, the above argument al-
ways assumes a monoenergetic incident wave. In a
real system the electrons have a Fermi-Dirac energy
distribution and their energies are smeared out by KT
around the Fermi level, Eg. If Ef is within KT of E,,
then the integrated resonant transmission (assuming I’
is much less than the resonance spacing Ae) is, by (7)
and (4), independent of I'; and proportional to r.,
since inelastic scattering broadens the resonance while
damping it. This is to be contrasted with the theory
given in Ref. 3 where it is proposed that inelastic
scattering broadens the resonance but does not damp
it, so that the integrated resonant transmission is actu-
ally increased by inelastic scattering. In our theory the
integrated resonant transmission is always proportional
to I', but the nonresonant (hopping) transmission is
proportional to I';, and will rapidly dominate the
resonant transmission when I'; >> I',. Therefore, ei-
ther by looking at the peak transmission or the in-
tegrated transmission one arrives at the same sensible
physical criterion: Resonant tunneling is only observable
when the intrinsic (elastic) resonance width is greater than
or equal to the inelastic width.

We now specialize to the case of a short, quasi-one-
dimensional, disordered resistor, where the important
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inelastic conduction mechanism is variable-range hop-
ping, with T';=T,=wolexp—(Ty/T)Y2], and the
elastic width, defined earlier, is the leak rate out of a
state localized at the center of the sample. The cri-
terion for seeing large resonant tunneling effects be-

comes
fo
exp| — | ==
Pl T

Roughly speaking the criterion (8) means that reso-
nant tunneling is unimportant until the Mott hopping
length is half the sample length, which is reasonable
since this is the distance an electron must elastically
tunnel to get into a strongly resonant state. If we take
the experimental parameters of Ref. 3, and assume the
most favorable (longest) possible value for the locali-
zation length, the temperature 7, at which (8) is satis-
fied is about 10 mK. Since the lowest temperature at
which experiments have been done is 50 mK, it ap-
pears unlikely that resonant tunneling is responsible
for the structure in the conductance seen in present
experiments.

As noted earlier, this structure may be explicable
solely in terms of finite-size fluctuations in variable-
range-hopping conduction. The two mechanisms may
be distinguished experimentally by looking at the
structure InG vs Er as a function of temperature.
Above T, the peaks are due to fluctuations in the criti-
cal path for Mott hopping and thus should change sub-
stantially both in location and magnitude when the
temperature is changed by an amount (7, 7) 1/2, which
is a typical energy barrier in Mott hopping. Very re-
cently careful measurements of this type have been
made and appear to agree better with the hopping-
fluctuations theory.!? In general, the observed rapid
growth of the peaks with increasing temperature is in-
consistent with our above calculations (but not with
those of Ref. 3). Below 7, there are two possible
behaviors depending on how far Ef is from the energy
of a good resonance, E,. Fermi energies within KT of
some E, will give rise to resonance peaks in InG whose
locations and maximum intensities are essentially tem-
perature independent. When the Fermi energy is near
a resonance, but not within K7, the primary conduc-
tion mechanism will be activated hopping to the reso-
nance,® and this will give a triangular shape to the
peaks of InG with slope 1/KT. In the valleys the pri-
mary conduction mechanism will still be Mott hopping
until the temperature is so low that the hopping length
becomes longer than the sample length. Then, at en-
ergies where (Er— E,)/ KT > L/ L the activation bar-
rier to the resonance is so high that the electrons
prefer to tunnel nonresonantly through the sample.
This will give rise to a flat, temperature-independent
background with InG = —2L/L, (where the conduc-
tance G is measured in units of e% #). Resonant tun-

1/2
Fm 2'7T(x)0 /

F=Ae

L

Ly

=1. (8)
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neling behavior of this type may well be observable ex-
perimentallly if it is possible to fabricate shorter sam-
ples with characteristics similar to those already stud-
ied.
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