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First-Principles Calculation of the Electric Field Gradient of Li3N
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The electric field gradient can be obtained from self-consistent energy-band calculations by the
linearized —augmented-plane-wave method provided that a general potential is used. This first-
principles method, which does not rely on any Sternheimer antishielding factor, is tested for Li3N
and yields electric field gradients for Li(1), Li(2), and N in excellent agreement with NMR experi-
ments. The electric field gradient is mainly determined by local distortions of the electronic charge
density, especially in the case of the polarizable N ion.

PACS numbers: 71.70.Jp, 61.50.Lt, 71.25.Tn

All nuclei which have a nuclear-spin quantum
number I & 1 have a nonspherical nuclear charge dis-
tribution and an electric quadrupole moment 0. The
nuclear (electric) quadrupole interaction (NQI) can be
an aid to determine the distribution of electronic
charge surrounding such a nuclear site. The experi-
mental techniques to study the NQI are, for example,
nuclear magnetic resonance (NMR), nuclear quadru-
pole resonance (NQR), or Mossbauer measurements.
From such experiments the NQ coupling constant

oe@/h can be obtained, where e is the charge of the
electron, h is Planck's constant, and @ represents the
electric field gradient (EFG) in form of the traceless
tensor @tj= Vt~

——,8,J'7 V. Generally speaking P,J can
be obtained from measurements of the NQI but not
V&. For review articles see Cohen and Reif' and Kauf-
man and Vianden. 2

In early investigations, particularly in the case of
ionic solids with which the present paper is concerned,
an attempt was made to interpret the EFG due to point
charges on lattice sites around the ion containing the
nucleus in question. In such a model it was necessary
to incorporate the so-called Sternheimer factor y
which accounts for the (anti)shielding of the ionic
contribution by the core electrons of the central ion.
Since this simple model was not very satisfactory, it
has been improved in various ways, for example, by
replacing the point charges by overlapping ions or by
treating the antishielding factor on a first-principles
basis rather than as a parameter. The recent work on
Fe203 may serve as a representative example for such
an investigation which also contains many references
to this topic. In that work an assumed ionic model
leads to an NQ coupling constant of one-sixth of the
experimentally observed value. From this discrepancy
the authors deduce for Fe203 the presence of a co-
valency component which was not included in their
study, and they emphasize the need for a first-
principles (covalency) calculation in order to obtain a
complete understanding of the origin of the NQI.

The present paper describes a completely new ap-
proach to calculating EFG's from first principles. This
method is based on self-consistent energy-band-
structure calculations which use the local-density ap-
proximation for treating exchange and correlation and
allow the use of a general potential, from which the
EFG's can be directly derived without the need of any
Sternheimer factor. A second way to obtain EFG's
will also be discussed starting from the self-consistent
charge density of the crystal. The two procedures,
which are just two different ways of solving Poisson's
equation, lead to practically identical results. An inter-
pretation is made easier with the second method as it
allows the association of several contributions to the
EFG's with different spatial regions.

We have applied the new method of calculating
EFG's to the superionic conductor Li3N, mainly be-
cause this highly ionic solid crystallizes in a relatively
simple hexagonal structure, so that such a calculation
is feasible. The other reason is that in Li3N there are
three independent EFG's which have all been mea-
sured: one for N and two for the crystallographically
inequivalent Li(1) and Li(2) positions; thus there are
three values for which the new method can be tested.
Moreover, the EFG ratio for the two Li ions directly
given by NMR experiments provides a particularly
sensitive test, since it does not depend on the 0
values, which are not well known.

The EFG's can be obtained from self-consistent
energy-band calculations provided they are sufficiently
accurate and they contain enough flexibility in their
wave functions to describe the anisotropy of the charge
distribution. The linearized —augmented-plane-wave
(LAPW) method~ 5 should have this capability, if a
general potential (GP) is employed instead of the
often used muffin-tin (MT) approximation in which
the potential is spherically averaged around each
atomic site. Such full potential LAP' calculations
(FLAPW) have recently been described. 6 We have
extended our LAP' program accordingly so that we
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can handle a GP. In the LAPW method the unit cell is
divided into nonoverlapping spheres and an interstitial
region, where the wave functions are expressed in
atomiclike functions and, respectively, in plane waves.
Consequently, the charge density around the atom can
be written as a linear combination of radial functions
pI , (r, ). times modified spherical harmonics CI (r)
= [4m/(2l+1)]' Yl (r) (or symmetrized lattice har-
monics) and as a Fourier series in the interstitial re-
gion

XI pp (r;)Cl (r;)+Z;5(r, ), ith sphere

p(r) = (1)
X~p(K) e' ', interstitial.

Inside the atomic sphere i the Coulomb potential is

given by a similar expression

Vc,.(r,.)=X, VI;; (r;)Cl (r;) (2)

from which the spherical components of the EFG are
directly given by

e = lim (1/r;2) V (r, )
fI

so that all information for the EFG comes immediately
from the general potential upon which the band calcu-
lation is based.

In an alternative way of calculating EFG's one parti-
tions the charge density given by (1) into electrically
neutral densities for which —following Rudge —Pois-
son's equation is solved separately. Since the details
will be published elsewhere, 9 only the results should
be given here:

4m j,(zz, )
J x 'p2. , (x)dx —4m Xp(K) '

C2 (K)exp( —iK r;)
Kwo I

+ X K(l'm', 2m)Q,~;,V2~+, 7 (r; —r,. ). (4)
Imi

The first term is the contribution from the atomic
sphere (with radius R;), the second term stems from
the Fourier series (where j& is a spherical Bessel func-
tion), which is extended throughout space, while the
last term accounts for the multipole moments 01. at
all other sites where K are coefficients and 4' are lat-
tice sums (for further details see Ref. 9). The mul-
tipole moment 0 in the last term contains three contri-
butions: one from the i th nuclear charge (only for
l =0), another contribution from the electron density
of the i th sphere, and finally a correction for extend-
ing the Fourier series into the atomic sphere region.

The present work is an extension of an earlier
LAPW calculation in which the MT approximation was
employed. 'o Since the same parameters (sphere radii,
atomic positions) are used here, they need not be ex-
plained, but a few details should be mentioned: It is
only the N 1s state which is treated as thawed core, but
all others including the Li Is state are obtained from
the band calculation based on the GP. The lm expan-
sion for the density and the potential according to Eqs.
(1) and (2) is limited to l ~ 6; the LAPW basis con-
sists of about 140 unsymmetrized plane waves; a uni-
form mesh of 28 k vectors is used in the irreducible
wedge of the Brillouin zone.

Li3N crystallizes in a hexagonal structure with space
group P6/mmm. There are Li2N layers in which the
Li(2) atoms are arranged in a graphitelike structure
with the nitrogen atoms at the center of the hexagon.
Between these layers there are the Li(1) atoms atop
the nitrogen atoms.

So far the energy bands of Li3N have been calculat-
ed by the pseudopotential, " the LAPW method using
the MT approximation, ' and in a recent Hartree-Fock

study. ' The former two are similar and both differ
from the HF results, but all three calculations con-
clude that lithium nitride is not too far away from the
ideal ionic structure consisting of Li+ and N3 ions.
This is in agreement with x-ray diffraction data which
could be interpreted'3 by using scattering curves for
Li+ and for an N3 ion immersed in a stabilizing Wat-
son sphere. '4 It seems that none of these calculations
are sufficiently accurate for obtaining such a sensitive
quantity as the EFG.

Therefore new self-consistent LAPW calculations
have been performed using the GP as outlined above.
The results obtained are similar to the MT-LAPW cal-
culation by Blaha, Redinger, and Schwarz, '0 but the N
p bandwidth is increased from 2.21 to 2.72 eV and the
indirect gap is reduced from 1.47 to 1.15 eV. The den-
sity of states reflects these changes, but the partial
charges remain almost unaltered, where the largest de-
viation occurs for the N 2p charge, which is about 0.05
electron smaller in the GP than in the MT calculation.
This is mainly due to a reduction of the pxp~-like
charge, while the p, -like contribution changes only
slightly.

Already the MT calculation has shown'o that the
charge density is not spherically symmetric around N
[Fig. 1(b)]. This effect, however, is drastically in-
creased in the present GP-LAPW calculation as can be
seen in Fig. 1(a), which shows the difference between
the calculated crystalline and the superposed ionic den-
sities assuming Li+ and N ionic densities. ' The
new x-ray structure factors (available from the au-
thors) also deviate much more (up to 4%) from the
ideal ionic model than the previous MT calculation.
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TABLE I. Electric field gradient 4 in 10 0 V m
—2.

Model for 4 Li (1) Li (2) Li (1)/Li (2) N

Point charge
Muffin-tin LAPW
Present work
Experiment

—20.37
—7.47
—6.94
—5.87

9.01
3.72
3.41
2.88

2 ~ 26
2 ~ 00
2.04
2.04

0.33
3.41

11.16
13.04

-]r

r+) i~
Lii2)

(b)

I (&&~jg)~

FIG. 1. Difference electron density of Li3N in the (110)
plane with respect to a superposition of Li+ and N ionic
densities; contour intervals and numbers are in units of 0.01
e A: (a) GP-LAPW (present work), (b) MT-LAPW [tak-
en from Fig. 5(b) of Ref. 10].

Evidence for such deviations was clearly demonstrated
by analyzing the anisotropy in Compton profiles. 's

Because of the hexagonal site symmetries the EFG's
in Li3N are completely defined by the Cartesian com-
ponents 4, which are related to the spherical com-
ponent for m = 0 [Eq. (3)] by the relation 4 . ; = 24&o2. ,
It should be noted that the sign of the EFG as defined
here is in agreement with Cohen and Reif' and Kauf-
mann and Vianden, 2 but differs from the convention
used by other authors. '

The magnitude of the NQ coupling constants
~
eg&P/h

~
at all three positions of Li3N are known from

%MR experiments. ' ' Lewis and Schwarzenbach
tried to refine x-ray-diffraction data with the EFG's as
constraints. ' As these authors have pointed out there
are uncertainties in the Q values which could be as
large as 15%. These uncertainties carry over to the
EFG's, but the EFG ratio for the two Li positions
should be much more reliable, because this ratio does
not suffer from such uncertainties. The sign of the
coupling constant (and consequently also for the
EFG's) is not determined experimentally, but high-
temperature NMR data indicate opposite signs for the
EFG at Li(1) and Li(2).

TABLE II. Contributions to the EFG, 4~, in 10 V m
obtained by the present GP-LAP% calculation.

Term Li(1) Li(2) N

(1) inside sphere
(2) Fourier-series
(3) lattice sum

Total
Li ls band

—3.53
—10.32

6.92

—6.94
0.08

3.23
7.63

—7.45

3.41
0.17

10.86
2.43

—2.13

11~ 16
0.001

Table I summarizes the EFG data, where we com-
pare the results of the following: (i) the simple point
charge model (assuming Li+ and N3 ); (ii) the
results of a muffin-tin (MT) LAPW calculation, where
the EFG's can be obtained via the charge density ac-
cording to the second formalism9 [Eq. (4)]; (iii) the
present results obtained from a GP-LAPW calculation
using the second method again. The last results agree
to within 1% with the direct calculation according to
Eq. (2).

A very simple point charge model is not satisfactory.
Since even the ratio Li(1) to Li(2) differs from experi-
ment, a common Sternheimer factor for the two Li po-
sitions cannot bring these values in agreement with ex-
periment. The MT results behave differently; they are
already reasonably close to experiment for the Li sites,
but the EFG at N is off by a factor of almost 4. The
present GP-LAPW results are in good agreement as
regards value and sign, i.e. , they are perfect for the re-
liable ratio, while each EFG agrees to about 15% with
experiment, which is the underlying accuracy of the 0
values.

In Table II the present results are divided into the
following three contributions to the EFG's: (i) from
the atomic sphere around the nucleus for which the
EFG is calculated [first term in (4)]; (ii) from the
Fourier series [second term in (4)] corrected for the
contribution to the multipole moments which is
caused by extending the series into the atomic sphere;
and (iii) from the multipole moments of all other sites
excluding the correction above.

In Table II we notice a large compensation between
the second and third term, so that the EFG is essen-
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tially determined by the first term. This observation
holds true for Li(2) and N, but not for Li(1). This ex-
ception might be caused by the small sphere size of
Li(1) which —as a consequence of the crystal
structure —has only about half the volume of the
Li(2) sphere. A similar analysis of the MT results
have shown that the largest effect of the GP calcula-
tion occurs for the first term corresponding to the N
sphere. This agrees with the observed stronger devia-
tion from spherical symmetry in the GP difference
density [Fig. 1(a)] in comparison with the MT result
[Fig. 1(b)]. The last line of Table II shows that the
contribution of the Li 1s band is almost negligibly
small. Therefore the EFGs are determined by the N
2s and N 2p bands. This justifies the treatment of the
N ls states as atomic states which do not contribute to
the EFG's.

We conclude that the present calculations have
shown a new method for obtaining EFG's from first
principles. It has provided excellent results for Li3N
where mainly the very local distortions of the electron
density determine the EFG's. The contributions from
the remaining sites largely compensate for the effect of
the interstitial region. Therefore, in our approach the
neighboring atoms act not so much directly (via mul-

tipole contributions), but rather affect the self-consis-
tent charge density of, and consequently the EFG at,
the central atom. The MT calculation can explain the
EFG's at the Li positions, but it fails for the nitrogen
site with its polarizable electron density. The new
method, however, based on GP-LAPW calculations
leads to excellent agreement with the experimental
EFG's, which are very sensitive quantities. There
might even be a possibility to obtain more accurate 0
values from such calculations. There is a fair chance
that this new scheme will prove as successful for other
compounds (including metallic systems) as it has been

for Li3N.
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