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We demonstrate that the equations of hydrodynamics for a simple compressible fluid, including
nonlinearities and thermal fluctuations, display a transition, at sufficiently high densities and low
temperatures, to a glass. The theory leads to predictions for the behavior of viscosities, sound
speeds, and correlation functions near the transition.
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The equations of hydrodynamics for a simple com-
pressible fluid display a transition at sufficiently high
densities and low temperatures to a "phase" with the
properties' of real glass. A remarkable feature of this
transition is that it is purely dynamical: All static prop-
erties, like thermodynamic derivatives, are regular as
one goes through the transition. The shear and bulk
viscosities diverge at the glass transition temperature
TG. There is a discontinuous jump in the longitudinal
sound speed as the temperature T is lowered past TG.
For T ( TG, transverse sound waves propagate at arbi-
trarily low frequencies co, with a speed whose zero-
frequency limit vanishes discontinuously at TG. The
density-density correlation function acquires a visco-
elastic peak at ~=0 as T TG, with a width which
drops continuously to zero at TG and stays there for
T~ TG.

This behavior of the transverse modes can be inter-
preted in terms of a shear modulus which vanishes
discontinuously at TG. The viscoelastic response of
the system in the large co~ limit, where ~ is a charac-
teristic time, shows a nonuniversal power-law behavior
in keeping with a vast number of observations in
glassy systems. Finally, our theory leads naturally in
the glass phase to a yield stress of the order o; the
shear modulus.

The dynamical mechanism (nonlinear density fluc-
tuations) which leads to this glass transition was re-
cently discovered by Leutheusser and Yip (LY)" s in
the kinetic theory of hard spheres. As will become
clear below, the origins of their model differ consider-
ably from ours, and their results emerge as a low-order
approximation to our more general results.

The equations governing the low-frequency and
long-wavelength behavior of an isotropic compressible
fluid are those of fluctuating nonlinear hydrodynamics

including dissipation and thermal fluctuations. These
equations describe the dynamics of the conserved or
slow variables in the problem, namely, the mass,
momentum, and energy densities p, g, and e. Since e

plays a secondary role in the development, we shall ig-
nore it in what follows. Results which follow in its in-
clusion will be given elsewhere. The hydrodynamic
equations can be derived by use of standard methods6
with the usual results

"dp/"dt='7 g,

(2)

where qo and (0 are the bare shear and bulk viscosi-
ties and V—= g/p. f, is a Gaussian noise source whose
statistics are related to qo and (o via a fluctuation-
dissipation theorem in the conventional fashion. The
other term, pV;5FU/5p, involves the "potential" part
of the effective free energy F [p, g] which governs the
equal-time correlations of the fields p and g. Quite
generally one can write8

F[p, g] = J d'x(g'/2p)+ FU[p], (4a)

F [p]= Jii d3~[f(p)+ —,
' C(~p)~+ ] (4b)

where f is analytic in p with a quadratic minimum at

Equations (1) and (2) are just the continuity equation
expressing conservation of mass and momentum. The
second term on the left of (2) is the usual convective
term. o-;J is the dissipative part of the stress tensor
given by

tr,ID= —7io('7, VJ + 'vrj V, ——', 5;~O' V) —(OB,JV V,
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the quiescent density po, C is the phenomenological
parameter, and the ellipses indicate more complicated
terms, e.g. , higher orders in '7p, cross couplings, etc.
In general, in a hydrodynamic theory, one should al-
low for all terms compatible with symmetry, conserva-
tion laws, and overall stability. If one neglects the
dependence of FU[p] on the spatial derivatives of p,
then one easily finds that pV;tIFU/Bp = V;P [p],
where P = p 8f/8 p f gi—ves the familiar thermo-
dynamic relationship between the pressure and the
free-energy density. Thus we obtain the pressure term
in the Navier-Stokes equation. Note that even in the
simplest case where f is quadratic, f= —,

'
X '(Sp)

with 6p = p —po, one generates a nonlinear term in the
equation of motion since P=poX '5p+ —,'X '(6p) .

This essentially dynamical nonlinearity and related
terms are responsible for the glass transition in the
theory.

In a complete theory of the glass transition we must
typically include in the analysis the competition of the
supercooled liquid state with the more stable crystal-
line state and the associated effects of a finite quench
rate. This requires the addition of terms to the free
energy which reflect the crystalline instability and the
treatment of the nonequilibrium problem of a quench
at some finite rate from an equilibrium state where the
liquid is stable to a state where we expect a glass tran-
sition. While it seems possible to carry out such an
analysis, it is sensible to first ask if a stationary glass-
like state exists if crystallization can be avoided. We
address this question specifically in this paper and will
return to the more general situation in a later work.

The fluctuations in a stationary state are convenient-
ly studied through an analysis of the spatial Fourier
transforms of the time autocorrelation functions. We
focus here on the density autocorrelation function

Cp(q, t) = (hp( —q, 0)hp(q, t)),
and a related analysis follows for the transverse-cur-
rent autocorrelation function CT(q, t) The Laplace-.
transformed quantity

t +oo
C~(q, z) = —i dt e+'"C, (q, t) (6)

has the general representation

Cp(q, z) = x(q)
z —c'q'[z+ iDt (q, z) q'] '

where X (q) = C~ (q, t = 0), c is the isothermal (adia-
batic if we include the energy variable) speed of
sound, and poDL (q,z) = ((q,z) + 4q(q, z)/3, where

(7',z) and ((q,z) are generalized shear and bulk
viscosities. In the absence of nonlinearities in the
equations of motion, 7i(q, z) = go and ((q,z) =(0, and
we obtain the usual9 mode structure for simple fluids.
The glass transition is caused by the effects of non-
linearities on the effective transport coefficients.

Using renormalized perturbation theory'0 we can
develop a systematic perturbation-theory analysis of
these equations in powers of kp, T. For dimension
d ~ 2 the convective nonlinearities lead to strong fluc-
tuations which cause a breakdown in conventional hy-
drodynamics. Our analysis therefore will be restricted
to d & 2 where the convective and various other non-
linear interactions in our "loop" expansion lead to no
qualitative changes in DL (q, z) and q(q, z) and their
contributions can be absorbed into DL and q . The de-
tails of the graphical analysis will be given elsewhere.
A key point is that for low temperatures the vertex in
the equation of motion proportional to (Sp) and
higher powers of 5p forces Dt (q, z) to grow suffi-
ciently large for small z that $(z) = C~(q, z)/X(q)
= [z+id '(z)] ', with d(z) =DL(q, z)/c, becomes
large and essentially independent of q. (We assume
here that we work with wave numbers sufficiently
small so that we can replace the static structure factor
with its q=0 value. ) Consequently @(z) becomes
sharply peaked near z=0. This result can then be
used to simplify Feynman graphs at arbitrary order
which have vertex insertions from the density non-
lineari ties.

One finds that internal propagators can be essentially
shrunk to 5 functions in time which in turn leads to
the nonlinear integral equation

d (z) = d, + ~t dt e+"'H ($(t) ),

d(z) =ih(1 —h) 'z '+ d„(z) (9b)

and a similar expression for q(z), where for long times
or small frequencies $„and d„are small compared to
the leading terms. Inserting (9a) into the equations
for @ and d and expanding in powers of @„(t),we find
that @„(t)—t ~ at the transition; furthermore, one
obtains an equation with terms diverging as z
z '+~, and z '+ ~ for small z. The condition that the
coefficients of these terms vanish at the transition
gives the three equations

(1+H)h=H,
1+ H= (1 —h)H',

(10a)

(10b)

and an analogous equation for q (q,z) = 7i (z). H(x) is
analytic in x with a power series that begins at O(x ).
Leutheusser solved a special case of (8). Our method
of solution of the general equation is quite similar to
his.

A perfectly natural definition" of a glass is a system
where @(t) const for long times. We therefore as-
sume in the glass phase that the solution of the cou-
pied set of equations for d and $ is of the form

@(t)= h+@„(t),
or, equivalently,
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and

H'I (1—y) = (1 —h )H" I (1 —2y)/2, (10c)

where the argument of H is h and I is the gamma
function. In the glass phase, @„(t)decays exponential-
ly, ' and his determined by (10a).

Our basic results are that (i) Eq. (8) holds for some
function H; and (ii) Eqs. (10) determine TG as a func-
tion of the other parameters in the theory, the value of
hat TG, and the exponent y.

In general, H will depend on the precise form of the
effective free energy and hence will be system depen-
dent. As a result, so will TG, h„and y. Whether a
given system has a solution for TG & 0 is not accessi-
ble in our hydrodynamic model. This will depend on
certain microscopic properties of the system. Howev-
er, if the system does form a glass and can avoid
crystallization, then this theory should describe the na-
ture of that transition. That is, it is characterized by a
phase boundary TG = TG(p, C, . . . ), an infinite-time
limit of the density-density correlation function h, and
an exponent y with ramifications to be discussed
below.

It should be pointed out that there are no compel-
ling mathematical reasons for truncating the function
H at a finite order in the loop expansion since the
series is not expected to be convergent. On the other
hand, the excellent results of Ref. 5 for the freezing
packing fraction of hard spheres and our results (see
below and Ref. 13) for the growth of the viscosity as
T TG as compared with computer simulations indi-
cate that power-series approximations for H(@) may
be useful.

Analyzing coupled sets of equations derived' in an
approximate kinetic theory, LY arrived at (8) but
with'5 H(@) =4k.@2. Using this form for H(h) in

(10), one obtains A. , = 1, h, = —,', and y=0.395. . . at
the transition. It is easy to see from our results that
these values are modified by higher-order corrections.
In a model where f is purely quadratic, including con-
tributions up to order @ in H, and solving the set of
Eqs. (10), one'6 obtains A. , =0.55. . . , h, =0.59. . . ,

and y=0.385. . . . Thus the value of y shows a cer-
tain robustness, but this may be spurious. We em-
phasize that our basic conclusions are not tied to these
estimates for A. „h„and y.

Notice that the value of h at TG is nonzero. The
behavior of the transport coefficients on either side of
the transitions, when expressed in terms of y, is the
same as in LY, except that y is nonuniversal. Intro-
ducing e =

~
T TG ~, we find'3 that —Red(0, T) and

Re7l(O, T) go as e "for T & TG and e ~ for T & TG,
while both Red(z, TG) and Req(z, TG) diverge as z~

where p, = (1+y)/2y, p, '= p, —1, and 0 & y & 2.
Since Req(z) —z~ ' near the transition, one obtains
the result that for c0~ (~ being a characteristic time

scale) large the viscoelastic response of the system
scales with a power law (cu7. )~ ' as observed in many
glassy systems.

The structure of the time Fourier transforms
C (q, co) and CT(q, co) which follow from our results
is particularly rich and will be discussed elsewhere.
We note here that the longitudinal sound speeds jump
from c in the liquid to c/(1 —h)' 2 in the glass, while
the transverse speeds jump from 0.

Our hydrodynamic theory is very general. It does
not start with any particular microscopic model (say,
hard spheres or tetrahedrally coordinated silicon) but
is valid quite generally for any compressible fluid sys-
tem, by construction, since the corresponding equa-
tions include all terms allowed by the symmetries'
and conservation laws of the simple fluid. The sole
limitation of such an approach is its inability to answer
questions that involve a precise knowledge of the nu-
merical values in those equations.

Finally, we emphasize the ideal nature of the sta-
tionary state we have explored. Except for systems
with extremely rapid quench rates and complete
suppression of crystallizations, one expects that there
will be kinetic effects, such as vacancy diffusion and
metastability, which can cut off the sharp nature of the
state we discuss here. We believe, however, that our
model is a convenient starting point for investigating
the inclusion of these effects.
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