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Periodic Spinodal Decomposition: Light Scattering in the
Phase-Separating and Disordered Regimes
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If a fluid mixture is periodically driven through its critical point, two distinct regimes are ob-
served by light scattering. In one, the system ultimately approaches a meniscus-free state, and in
the other, phase separation finally occurs. We focus attention on differing scaling forms of the
structure factor in these two regimes and on the unexpectedly strong concentration fluctuations
which are present in the disordered-phase state. Mean-field behavior is seen in this system.

PACS numbers: 64.60.Ht, 64.70.Ja

Two competing effects occur when a fluid mixture is
periodically quenched through its critical point. ' In the
low-temperature portion of the quench period,
domains of the separating phases grow in composition
difference and in size while on the high-temperature
half period, they tend to dissolve. If the average tem-
perature T is low enough, phase separation prevails.
In this regime local domains develop and, as phase
separation advances, the two phases become distinct,
with a sharp interface between them. On the other
hand if Tis greater than a certain critical value (which
we found to be greater than T, for the range of param-
eters considered), the mixture remains in a disordered
phase, and after many quench periods seems to ap-
proach a (period-averaged) steady state. This transi-
tion occurs at some average temperature T= T' whose
numerical value depends on the quench amplitude Tt
and on the period tp of the temperature oscillations.

We have studied this new type of phase transition
with light scattering and herein summarize our find-
ings. Our most unexpected observations were in the
disordered-phase regime, T & T'. After the periodic
state is approached, the scattering intensity becomes
very large, implying correspondingly large spatial vari-
ations in composition, even though the system is visu-
ally homogeneous in each portion of the temperature
cycle. Down to wave numbers at least of order 103
cm the scattering is, in fact, greater than if the sys-
tem were in thermal equilibrium and at its critical tem-
perature. The structure factor S ( k, t) for this dis-
ordered-phase system approaches a strongly enhanced
limiting intensity which is almost stationary at short
wavelengths. As the system evolves toward its steady
state, a ring of scattered light develops, intensifies, and
shrinks in diameter. In this respect its behavior is as
in normal spinodal decomposition (NSD). However
S(k, t) has a somewhat different scaling form.

In the phase-separating regime of periodic spinodal
decomposition (PSD), T ( T' S ( k, t) also has the
same angular dependence as in NSD but with a dif-
ferent dependence on quench depth that suggests
mean-field rather than Ising behavior.

The experiments were performed on an isobutyric-
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FIG. 1. Weighted angular distribution of scattering at
various times for o. ) o.' (disordered-phase regime). The
quench period is 1.0 sec. Inset shows the coexistence curve
in the temperature-composition plane and defines quench
parameters. This diagram corresponds to a=(T T, )/T, -—
& 0.

acid —water (I-W) mixture of critical composition. The
setup is the same as in Ref. 1, but with one exception:
To improve the signal-to-noise ratio, a conical lens
collected the light over all azimuthal angles and
focused it on a traveling photodiode which thus
recorded the scattered intensities as a function of
scattering angle 0 and t Here. , as in Ref. 1, it was the
pressure over the mixture rather than the temperature
which was periodically varied. We will assume the two
modulation schemes to be equivalent and will desig-
nate quench depths in temperature units.

The quench scheme is diagrammed in the inset of
Fig. 1. Prior to the initial quench, at t = 0, the mixture
is in thermal equilibrium at the one-phase temperature
T= T+ Tt. In NSD, characteristic phase separation
times are of the order of seconds to minutes, 3 while in
the present experiments the collapse time could be
prolonged to an hour. ' The light source was a He-Ne
laser (Xo = 633 nm) and the angular range of the mea-
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surements was 0.3'~0~3.0 . In I-W the refractive
index is n = 1.36, so that the corresponding wave-
number interval is 0.7X 103~ k ~ 6.8&& 103 cm
where k = (4m n/A. o) sin(0/2). Other relevant parame-
ters for this mixture are T, = 26.1 'C, viscosity
q=0 024 P, g(T) =foe ", where v=0 613, e= (T
—T, )/T, (T & T, ), and go(T & T, ) =0.357 nm. The
quench amplitude Tt spanned the interval 3
mK~ T~ ~ 10 mK and 2 mK~ (T T, ) ~——2.7
mK. The data were corrected for multiple scattering
by dividing the measured intensity by the forward in-
tensity IF(t). The time variation of IF also identified
the two regimes Tgreater or less than T, as discussed
below. With the exception of the data in Fig. 3 the
quench period was fixed at t~

= 1.0 sec in the measure-
ments discussed here.

When existing theories of NSD are extended to cov-
er PSD three new parameters appear, the reduced
quench depth o., characteristic length g, ( T, ), and
scaled time interval p, .'(a) rr —= ( T—T, )/ Tt, (b)
g, ( T)) =—(o( T)/T, ) ", (c) p, =—[ka T/12m q(, ( Tt) ]tp

T3p

The phase transition identified in these experiments
may equivalently be designated by the temperature T'
or by a critical value of o. '(p, ) = ( T' T, )/Tt. Ex—p«-
imentally cT is positive and increases (weakly) with in-
creasing p, .

As noted above, the light scattering takes the form
of a collapsing halo of growing intensity for both cr

greater and less than o.'. But the forward intensity IF
exhibits a different time dependence in these two re-
gimes. For o-( o-', i.e., in the regime where a men-
iscus forms after many quench periods, IF(t) contin-
ues to decrease with time, as the spinodal ring col-
lapses, just as in NSD. As a- is increased above a cer-
tain value of o. (o-'), IF(t) behaves very differently,
namely, IF( t) quickly reaches its final value and
remains there even though a spinodal ring is intensify-
ing and collapsing.

When a. & cr' the composition fluctuations become
stronger than at thermal equilibrium where the struc-
ture factor satisfies well the Ornstein-Zernike (OZ)
equation S,„(k,t)=A/(k2+( '), where A is a con-
stant. Rather than plotting S(k, t) vs k, we show in
Fig. 1 H(k, t) —= k S(k, t) vs logk. The measurements
are at t = 7.30, 18.63, 39.42, and 44.94 min with
p, = 3.5 and o- =0.25, where o-' lies between the values
0.16 and 0.20. Were these curves of OZ form, one
would have H(k, t) = k2S (k, t) = 3/[1+ (kg) ] & A.
However, the data in Fig. 1 show a maximum which is
greater than 2 and a shifting to smaller k as t increases.
The intensity maxima appear to tend to a limiting
value greater than A/k2 down to the lower limit of the
measurable wave-number region. It follows that the
small-k composition fluctuations are stronger than if
the system were in thermal equilibrium and at its criti-
cal temperature. When the data of Fig. 1 are replotted
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FIG. 2. The values of g,« in this figure are obtained by
mapping the normal and periodic (a. ( o.') spinodal decom-
position data onto each other. The quantities when plotted
in this fashion are expected to be independent of p, .

to show 1/S(k, t) vs k2, they fit a straight line (down
to a small value of k) in accordance with the OZ
theory but with g roughly zero or even negative. The
measurements conform to this modified OZ form at
late times only (t & 30 min for the parameters of Fig.
1). While stronger-than-critical scattering is to be ex-
pected from a phase-separating mixture, as in NSD, it
was not anticipated in this driven, disordered-phase
system. 4 5

The peaks in Fig. 1 do not imply the existence of a
ring. In fact the ring has completely collapsed by 44.94
min for the run of Fig. 1. Roughly 10 min after the
collapse of the ring the scattering always develops az-
imuthal asymmetry, with a maximum in the horizontal
direction. This suggests that gravity is stretching the
composition fluctuations in the vertical direction.
Visual observation of the scattering pattern after many
hours (in some cases a day) reveals little further
change in S(k, t).

While we observe notable differences between PSD
and NSD when o. & o.', a common feature is the
development of a collapsing ring. The ring size,
k~(t), has the same functional form as in NSD, and in
fact the two sets of measurements can be mapped onto
each other. To do so one rescales tand kas q = k g
and r = (kaT/67r7lg ) t but with g replaced by a new
length, g,rr. In Fig. 2 we plot [$,(Tt)//(, rr] vs o.. The
data points lie on a straight line, implying that

ff x (o ' —rr ) ""with v, ff 2 but we cannot deter-
mine v, tr with precision. For each p, , (',tt decreases
until it reaches zero at the extrapolated value o. = o.'.
The set of values o-'(p, ) deduced from this extrapola-
tion are, within error, equal to those obtained from the
forward intensity data referred to above.

As in NSD, 6 7 the domains, which appear and grow
when o. & o.', have a self-similar form. This self-
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FIG. 3. The scaling function k35(k, t) vs the effective

correlation length (,ff. The solid line is a least-squares fit to
the data points and yields the exponent X defined in the
text.

similarity is revealed in a rescaling of S(k, t) and k it-
self. As in NSD, the k dependence of S(k, t) implies
that the scattering is dominated by the interfaces
between growing domains. 9 The signature of interface
scattering is the relation S(k, t)~ 1/k4 at large k. This
dependence is found here when o. & o.' as well as in
computer simulations and laboratory studies of NSD. 9

Even when o. ) o-' a rescaling of S(k, t) and k reveals
a self-similarity of the domains. Now, however,
S(k, r)~ I/k~ at large k with @= 2.6. Presumably
@ & 4 because the (transient) domains never develop
sharp boundaries in the disordered-phase regime.

Another type of rescaling is indicative of a mean-
field aspect to PSD when o- & o-'. In NSD the quan-
tity JNsn—= k S(k, t)/(T, —T) i (with P=0.31) is
independent of time and T, —T. ip Equivalently
k~S(k(m), t)cc (T, —T) ~~ (T, —

T)"ccrc

'. Analo-
gously we find that k S(k, t)/Tt(o. "—o. ) is a con-
stant independent of time, T, t~, and o- if 0=1.0.
This suggests that the system supports fluctuations of
a mean-field type. To confirm this we fitted the mea-
surements with the form k S(k, t)~g, rr . Our data
points in Fig. 3 were obtained from individual runs for
which the range for rt and T is the same as that given
earlier. In some runs &~=2.0 sec instead of 1.0 sec.
This figure reveals that X=1.89+0.06. A value of
X=2.0 is expected from mean-field theory, which

predicts (,rr
= (p(k T rr/T, ). This leads to

&&S(k,t)~g (X=2) rather than the NSD result
L= 1. Such mean-field behavior is predicted and ob-
served in systems far from equilibrium. "

In summary, we have verified a theoretical predic-
tion4 5 of a phase transition in spinodal decomposition:
When the average temperature exceeds some critical
value, T= T', the fluid mixture evolves to a disor-
dered phase state, and when T is below T', phase
separation occurs. The transition temperature T is a
function of the amplitude (and the period) of the tem-
perature oscillations. %hen T ) T', very large com-
position fluctuations are observed —so large, in fact,
that the fluctuation-dissipation theorem may not hold
in this new disordered phase. Thus it would be very
interesting to examine the renormalization effect of
these fluctuations on, say, the concentration decay rate
at long wavelengths. In both regimes the structure
factor has a self-similar form but at large k it shows a
distinctly different power-law behavior.
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