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A dispersion relation is used to show that the "anomalous" behavior of the real part of the opti-
cal potential for ' 0+' 'Pb scattering at low energies is an example of a general property of heavy-
ion optical potentials at energies approaching the top of the Coulomb barrier, where the flux into
nonelastic channels is drastically reduced.

PACS numbers: 24.10.Ht, 25.70.Cd

It is shown in a recent paper' that the optical poten-
tial that describes ' 0+ Pb elastic scattering behaves
in an apparently anomalous way (see Fig. 1) as the
bombarding energy, E, approaches the Coulomb bar-
rier (E = 80 MeV for this system). The imaginary po-
tential decreases sharply in magnitude for E & 90
MeV, but this can be understood because the non-
elastic channels are being effectively closed by the
Coulomb barrier. However, at the same time, the real
potential sharply increases in magnitude; by E =78
MeV it has reached approximately 1.7 times the
roughly constant value found for E & 130 MeV. A
similar "anomaly" has been ascribed recently to the
optical potential for the S+ Ca system. We intend
to show that these results are to be expected on very
general grounds.

It is natural to ascribe such a behavior to the effects
of couplings to the nonelastic channels, which can pro-
duce changes in the real potential even below the
threshold where they are energetically closed. Such
couplings are included in a very general way in the
dispersion relation (DR) which connects the real and
imaginary parts of the generalized optical potential
U(r, r', E). If we write U= V+i8; this DR has the
form
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nonlocality. The latter is expected to be rather small
for heavy ions and will be neglected here. Hence-
forth, we drop the subscript M, and U, V, and 8'will
refer to the local model potential.

The effects on V of couplings to nonelastic channels
are contained implicitly in the induced interaction 6 V.

Further, any large, localized variation of W(E) with E
will be reflected in a similarly localized variation in
AV(E). In particular, when we remember that 8' is
negative, a moment's thought will show that a rapid
decrease in

I
8'(E) I as E approaches the Coulomb bar-

rier (or as E approaches zero for neutral particles) will

V(r, r', E) = Vo(r, r') + —I
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say, where P denotes principal value, and Vp is in-
dependent of E (though it may be nonlocal and hence
momentum dependent). Such a relation is a conse-
quence of causality and can be derived within the
framework of general reaction theory. It is the analog
of the Kramers-Kronig relation in optics. It can be ar-
gued plausibly that the DR is also obeyed by an
equivalent, local, model potential UM(r, E), although in
this case, the equivalent local VM p and WM terms will
contain some "spurious" energy dependence due to
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FIG. 1. Variation with bombarding energy of the real and
imaginary parts of the optical potential U for ' 0+ Pb
evaluated at the radius r = 12.4 fm. The dots represent em-
pirical values (Ref. 1). The curve for ReU was obtained
from the dispersion relation, using the fit to ImU that is
shown.
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result in a rapidly varying attractive contribution to 5 V
in the same E region. Such an effect in nucleon-
nucleus scattering has been invoked in studies of the
variation of the effective mass at energies near the
Fermi surface.

Except at the lowest energies, the scattering of
heavy ions is usually distinguished by strong
absorption, and analyses of such scattering tend to
determine the optical potential in a very limited radial
region near some "strong absorption radius. " This
sensitive radius varies slowly with the energy E,
whereas the DR relates values of the potential at a
fixed radius. In the case of ' 0+2OSPb, one measure
of this strong absorption radius decreases from
r = 12.8 fm at E = 129.5 MeV to r = 12.1 fm at
E =312.6 MeV, whereas the scattering at the lowest
energy (E = 78 MeV) is dominated by the position of
the Coulomb barrier at r = 12.1 fm. However, we be-
lieve that the slope of the potential in this region is
known well enough that the extrapolation of the em-
pirical values to a fixed radius is not attended by large
errors. In accord with Ref. 1, we chose r = 12.4 fm for
this radius.

The effect can be demonstrated by use of a very
simple models for W(r, E) in which its energy depen-
dence is represented by a series of linear segments.
This has the advantage that the resulting 5 V (r,E) can
be expressed in a simple analytic form. The behavior
of W(E) at high energies is not known. Since this has
little effect on the shape of 5V(E) at the low energies,
one may use the DR in a subtracted form by normaliz-
ing V at some convenient energy E, and absorbing the
unknown contributions into the empirical value at that
energy. Formally, this can be written as

V(r, E) = V(r, E, )

+ P (E E )
" W(r, E')dE'

( )(E E )(E E)

For the ' 0+ Pb, system, we chose two segments,
as shown in Fig. 1, with W (r = 12.4) = 0 at E = 74
MeV and constant at —1.2 MeV for E & 86 MeV.
There is some evidence 9 that W (r = 12.4) = —1.0
MeV at E = 312.6 MeV, and —0.8 MeV at E = 400
MeV, so that 8' may decrease slowly with increasing
energy at the higher energies. However, even choos-
ing the second segment so that W goes to zero at
E = 400 MeV, instead of being constant, has almost no
effect on the shape of the calculated 6 V(E) for the
low energies. The calculated curve for V shown in the
upper part of Fig. 1 was normalized to V = —1.3 MeV
at E =200 MeV. It reproduces very well both the
shape and the magnitude of the increase in depth of
Re U at the lower energies. At higher energies
—V(E) continues to decrease slowly. It is smaller
than the empirical values at 312.6 and 400 MeV, but

this may be due to an inappropriate choice for W (E)
in the high-energy region.

When the upper segment of W'(E) is chosen to be
constant, the resulting AV(E) is symmetrical about
the midpoint of the lower segment (E = 80 MeV in
this case). The steepness of the lower segment of
W'(E) determines the width of the peak in 5 V (E);
the empirical values of V seem to demand that the cut-
off on W'(E) near the Coulomb barrier be as sharp as
that shown. The effects of a more realistic, rounded,
shape for W'(E) are being investigated'0; preliminary
results indicate no qualitative changes in 5 V (E).

It is inevitable that W(E) will decrease in magni-
tude as E approaches the Coulomb barrier. [In some
cases such as o. + Ca and ' 0+ Si, nuclear structural
features"' may result in reaction channels being ef-
fectively closed, and hence in a strong decrease of

~
W(E) ~, at energies appreciably above the Coulomb

barrier. ] As we have indicated, this leads with equal
inevitability to a localized energy dependence of V(E)
in the same energy region. It follows that "global"
optical-model analyses (that is, simultaneous fits to
data for a number of different energies) that keep
V= const, or at most allow a linear dependence on E,
even at low energies, necessarily violate the dispersion
relation. One example of such a violation occurs in a
recent analysis' of ' 0+ Si scattering.

The same criticism may be made of attempts to
understand fusion cross sections in terms of a simple
barrier penetration model using a potential that is in-
dependent of the bombarding energy (for example,
see Vaz, Alexander, and Satchler' and other refer-
ences therein). For example, the V (E) shown in Fig.
1 yields a fusion cross section at E = 80 MeV that is
about 50 times larger than that which would be ob-
tained if one had assumed that V remained fixed at the
value shown for E = 160 MeV. Indeed, it has already
been pointed out' that, within the barrier penetration
model, the measured fusion cross sections for
' 0+ Pb imply that the real potential must be more
attractive for energies close to the top of the Coulomb
barrier than at higher energies. [However, we note
that a fully consistent treatment of the effects on
fusion of the channel couplings which give rise to
b, V(E) would also include the additional flux lost to
fusion from the nonelastic channels themselves: see
Jacobs and Smilansky, Udagawa and Tamura, and
Rhoades-Brown and Prakash, '6 for example. ]

In conclusion, we have pointed out that at energies
close to the top of the Coulomb barrier a complemen-
tary behavior of the real and imaginary parts of the op-
tical potential can be expected on very general
grounds. This behavior is expressed within a disper-
sion relation. A simple model for the energy depen-
dence of the imaginary potential allows one to repro-
duce the corresponding variation of the real potential
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in good agreement with empirical results for
' 0+ Pb scattering. A more detailed discussion of
the relation, together with applications to other data,
will be given elsewhere. '
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