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Quantization of Asymmetric Shapes in Nuclei
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We propose a description of asymmetric shapes in nuclei in terms of a bosonic U(16) group, and
discuss some properties of rotation-vibration spectra in the SU(3) limit of the model.
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Even-even nuclei in the mass region 2 = 226
display low-lying collective states of negative parity.
Several explanations in terms of reflection asymmetry
in the ground state have been put forth to account for
the properties of these nuclei, including one involving
the separation of nuclei into two unequal clusters. '

Recently, Leander et al. 2 have concluded from a study
of odd-even nuclei in the same mass region that the
reflection asymmetry is generated by an octupole-
shaped nuclear mass distribution. The purpose of this
note is to present a possible scheme for the quantitative
description of even-even nuclei with octupole shapes.
By comparing the predictions inherent in this scheme

with those of the cluster model, ' one may be able to
determine which interpretation best describes the ex-
perimental data.

Octupole shapes (A.~=3 ) may be described classi-
cally by parametrization of the nuclear radius in the
form3

R = Rp[1 + X„n3~ Y3~(0 @)].
In practice these shapes are always superimposed on
the usual symmetric deformation of multipolarity
A. P=2+ (quadrupole). The presence of octupole de-
formation causes a shift in the nuclear center of mass
that must be balanced by addition of a dipole deforma-
tion P P= 1, so that in realistic situations

(2)

where the nt's are determined by the n2's and n3's and
are, in lowest order, proportional to n2n3. It appears
from experiment that the deformations are not rigid,
but rather are soft against vibrations. Preliminary dis-
cussions of such behavior have been given by Roho-
zinski4 in terms of Bohr-type Hamiltonians involving
the n variables of Eq. (2). Here we present an alterna-
tive scheme, based on the introduction of bosonic
quanta.

Quadrupole collective states have been described by
consideration of a set of N interacting bosons having
angular momentum and parity JP= 0+ and JP= 2+,
called s and d, respectively. 5 The numbers of s and d
bosons may vary so long as the total number N is con-
served. We suggest that quadrupole-octupole collec-
tive spectra may be similarly described via a set of N
bosons with angular momentum and parity J =0+,
2+, 1,3, which we denote by s, d, p, and f. In what
follows, we discuss a particular limit of this model that
may be appropriate for the description of strong axially
symmetric deformation.

We begin by neglecting the quadrupole degree of

U(11)&U(10) &SU(3) zO(3) &O(2). (3)

Standard techniques allow one to construct Hamiltoni-
ans with eigenvalues

I

freedom and considering a set of N s, p, and fbosons.
It is noteworthy that, contrary to our initial expecta-
tions, we were unable to produce rotational bands with
energies increasing with angular momentum as L(L
+1) using s and f' bosons alone. [The s,f model,
which naturally leads to bands with energies increasing
as L (L+ 15), may be of interest in molecular phys-
ics.] However, incorporating a p boson makes the pro-
duction of rotational bands with L (L + 1) behavior
straightforward. To show why this is so, we note that
this model has a dynamical U(11) group, 11 being the
dimension of the space spanned by the s, p, and f bo-
son operators (1+3+7). States are therefore charac-
terized by the totally symmetric representations [N] of
U(11). A study of that group reveals the existence of,
among others, a dynamical symmetry corresponding to
the group chain

E(N Ntp, mt, xb, p p, Kp, L,M) = n +PN~+ pe + Kt, C(x y, p y) + K'L (L + 1),
with

C(A. , p, )=A. +p, +A.p, +3k. +3p, ,

where n, p, p, Kt„and K' are arbitrary constants and N, Nt„cut„&t„p, b, K&, L, and M label the states in chain (3).
N is the total number of bosons, Nt, is the number of negative-parity (p+ f) bosons, (X&, p, t, ) label the SU(3)
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representations, L and M are the angular momentum and its z component, respectively, and cub and Kb are addi-
tional quantum numbers needed to completely specify the states. In determining the allowed values of the quan-
tum numbers (Xb, p, b) one needs the branching rules for U(10) «SU(3); these have been tabulated in part by El-
liott6 and will not be given explicitly here. The spectrum resulting from Eq. (4) resembles that associated with a
strongly deformed, axially symmetric, reflection-asymmetric shape, except for the fact that the parity doubling ex-
pected from simple geometric arguments2 does not occur. Since positive-parity states arise from the manifold with

Nb even, and negative-parity states from that with Nb odd, bands of opposite parity are displaced with respect to
one another. Though exact parity doubling does not occur in real even-even nuclei, we may obtain it here, if we
wish, by introducing signature-dependent interactions, which act differently on states with Nb even and Nb odd.
Allowing these, we may modify Eq. (4) to

E(N, Nb, o)b, Abp, b, Kb-, L,M)

= n+ pNb+ y[1 —( —) /Nb]Nb + Kb[1 —( —) /Nb]C(hb, pb) +K'L (L + 1). (6)

The low-lying part of the spectrum of Eq. (6) is shown in Fig. 1. Particularly interesting is the structure of the
lowest (parity doubled) vibrations; they have quantum numbers K = 0-+, 2-+ and K = 1 +, 3 +, and we have called
them o. , 5, and m, @, respectively. In a reflection-symmetric body, represented by s and d bosons, the bands with
KP=1+ and 3+ as well as all those with negative parity are missing. Of the bands above, only the KP=O+, 2+ are
present.

We now proceed to a discussion of a more realistic case, including d bosons along with the s, p, and f bosons.
The dynamical group is now U(16); states are characterized by the totally symmetric representations [N] of that

group and can be written as linear combinations of configurations of the type (s,d) '(p,f), where N, + Nb = N.
The model has the interesting feature that both the s, d and p,f subgroups U(6) and U(10) contain the same sub-
group chains U(5), SU(3), and O(6). Since we are interested here in describing axially symmetric rotations, we
discuss only one of these chains. Denoting by SU(3), and SU(3)b the groups built from (s,d) and (p f) boson
operators, we consider the chain

U(16) «U(6) S U(10) «SU(3), S SU(3)b«SU(3) «O(3) «O(2), (7)
where SU(3) denotes the group formed by addition of the generators of SU(3), and SU(3)b. As before, standard
techniques allow one to construct Hamiltonians with eigenvalues

E(N, N~, Nb, o)b, A. ~, p„&b, p, b, A. , p„K,L,M)
=n+pN +byN +bK, C(A„p, )+KbC(Ab, pb)+KC(k, p)+K L(L+1), (s)

where the quantum numbers N, N„Nb, . . . label the states in the group chain (7). In addition to the branching
rules for U(6)«SU(3), and U(10)«SU(3)b, we also need here rules for decomposing the tensor product
(A.„p,,) S (Xb, p, b). These can be obtained by consideration of the Young tableaux.

As in the case discussed above, parity doubling does not occur naturally. If we wish its presence, we may again
introduce signature-dependent interactions to yield

E(N, N~, Nb, ~b A. ~, p, ~, A. b, p, b, A. , p„K,L,M)

= a+ pNb+ y[1 —( —) '/Nb]Nb2+ K, [1+( —) '/N, ]C(A.„p,, ) + Kb[1 —( —) '/Nb] C(Ab, p,b).
+ K [ 1 —( —) b/ (3Nb + 21'~ ) ] C (A. , p, ) + K'L ( L + 1 ) .

The spectrum corresponding to Eq. (9) is rather com-
plex, and we show in Fig. 2 only a small portion of the
vibrational bandheads. Note the presence of several
distinct kinds of bands, corresponding to quadrupole
vibrations, octupole vibrations, and relative oscilla-
tions of the quadrupole and octupole deformations.
These are the bands that should appear experimentally
if the nucleus has permanent octupole and quadrupole
deformation.

We have shown how the U(16) model can generate
decoupled rotation-vibration spectra, and analyzed the
structure of its vibrational modes in this limit. The
results shown in Figs. 1 and 2 represent idealized situ-

ations, and the obtaining of them has necessitated the
use of somewhat cumbersome signature-dependent
Hamiltonians. The main advantage of our model,
however, is not so much that it can reproduce these
idealized spectra, as that it may be used to treat quanti-
tatively properties of real nuclei. Since these do not
show exact parity doubling, the introduction of
signature-dependent terms may not be necessary. In
actual nuclei, the octupole deformations seem to be
very soft. The potential,

V(63) = —,
' Ce 3D+[e p —xe3/a ) —1],

e, = o.30, (10)
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FIG. 1. Schematic representation of the spectrum of a nu-
cleus with octupole deformation in the algebraic approach.
The spectrum is calculated from Eq. (5) with Q. =P =y=0
in the large-N limit. The rotational constants are chosen to
be Kq = ( —50/N) keV and K'= 10 keV.

used in Ref. 2 corresponds in the algebraic framework
to a transition from the rotational chain discussed
above [U(10)a SU(3) ] to the vibrational chain
U(10) &U(3) S U(7). One of us (J.E.) has written a
computer code to perform the calculations for these
transitional Hamiltonians.

One question raised by our work is to what degree
the model may be justified microscopically. In particu-
lar, the dipole collectivity implied by the p boson may
be difficult to obtain once spurious states correspond-
ing to center-of-mass motion are removed. Another
issue is the extent to which our model can be related
to the Bohr-type model of Rohozinski. 4 We are at
present investigating the connection in detail. Finally,
we hope that the availability of a technique to treat
quantitatively both quadrupole and octupole degrees of
freedom in even-even nuclei will stimulate further ex-
perimental and theoretical efforts to understand the
precise nature of the low-lying negative-parity states in
nuclei. At present, experimental information does not
allow us to distinguish conclusively between the clus-
tering' and octupole interpretations; we feel that ex-
perimental work on the structure of the excited vibra-
tional bands can help resolve the question.

This work was performed in part under the U. S.
Department of Energy, Contract No. DE-AC02-76

FIG. 2. Schematic representation of the vibrational spec-
trum of a nucleus with both quadrupole and octupole defor-
mation in the algebraic framework. The spectrum is calcu-
lated from Eq. (9) in the large-N limit with appropriately
selected parameters. There are three types of vibrations,
with scales set by &, K p, and K, . The first of these is labeled
with molecular spectroscopic symbols (X, II, 5, . . . ) in addi-
tion to the parity and value of K. The second type is labeled
as in Fig. 1 and the third type according to the usual nuclear
quadrupole notation (P and y). Other sets of vibrational
bands, corresponding to different values for N, and Nq,
have been pushed higher up in the spectrum and are not
shown in the figure. On top of each vibrational state shown
here, there is built a rotational band as in Fig, 1.
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