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Chiral Fermions from Compactification of O(32) and E(8) E(8) String Theories
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Compactification to four dimensions of a low-energy approximation to ten-dimensional O(32)
string theory leads only to grand unified theories with trivial replication of families. The
E(8) S E(8) string is more promising and leads in four dimensions to SU(8) with six families. If
compactification breaks the symmetry to lower-rank groups, e.g. , SU(7) or E(6), there may be any
number of families. In the SU(8) and SU(7) models there is nontrivial family symmetry.
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Recently there has been considerable interest in
higher-dimensional gauge theory and its spontaneous
compactification to four dimensions. ' Solution of the
Einstein-Yang-Mills field equations requires a non-
trivial vacuum value for the gauge fields in the extra
compact dimensions; this, in turn, has the advantage
of allowing massless chiral fermions to survive in four
dimensions.

This old approach had at least two shortcomings.
First, the quantum corrections are uncontrolled since
the theory is nonrenormalizable. Second, the gauge
theory is not unified with gravitation, contrary to the
original goal of Kaluza-Klein theory. 2

Both of these objections may be overcome in a ten-
dimensional string theory3 with open and closed
strings and based on a gauge group O(32) or
E(8) S E(8). Such a theory is possibly finite. Also,
the gauge coupling is unified with gravitation since the
theory contains only one parameter, the string tension.

The string theory with open strings leads to a chiral
anomaly in the hexagon loop diagram for any choice of
gauge group"; recently, in an interesting development
by Green and Schwarz, it has been pointed out that for
the two special choices of gauge group already men-
tioned the string incorporates a novel mechanism to
cancel the loop anomaly by a pole term due to ex-
change of a massless tensor particle. This pole term
induces a contact interaction which renders the
relevant Green's functions gauge invariant. In the
language of path integrals, the anomalous phase arising
from a chiral transformation of the fermion measure is
canceled by a phase arising from the gauge-dependent
action. The classical action is, as usual, gauge invari-
ant. The new term is proportional to Planck's con-
stant.

This type of anomaly cancellation in higher-
dimensional gauge theories means that the no-anomaly
conditions widely used are unnecessarily restrictive;
this more general aspect will be discussed elsewhere.

Here we shall focus on the two specific string theories.
(Some remarks on this topic have been made already
by Witten. )

Consider first the case O (32) . Recall that the
Majorana-Weyl fermions are in the adjoint of O(32).
Here the embedding of a subgroup is specified by stat-
ing the transformation of the defining 32-dimensional
representation. We cannot obtain E(6) since it is not a
subgroup. To obtain O(10) with its sixteen-dimen-
sional complex spinor involved would necessitate
32= 16+ 16' since 32 is real. But then the adjoint 496
of O(32) contains no spinors since it is the antisym-
metric part of 32X 32. Thus, O(32) is too small to al-
low embedding of an O(10) grand unified theory
(GUT) because the fermions are in the adjoint 496.
Of familiar GUT groups this leaves SU(N) which we
may embed as

32 =N+ N'+ (32 —2N) l.
For N ~ 7 as is necessary to obtain nontrivial family
unification, Eq. (1) is the only possible embedding of
SU(N). This means that the adjoint of O(32) contains
only the N+ N', the second-rank [2]+ [2]', and the
adjoint of SU(N) as nontrivial representations. This
means that the most general complex chiral represen-
tation on M4 will be of the form

fI[2]+ (N —4) [I] ]

where f'is an integer. Here [k] is the k-rank antisym-
metric representation. Equation (2) contains f fami-
lies but always trivially replicated. In this sense,
SU(N) family unification is impossible for the O(32)
string. This result does not depend on the compact
manifold %6 involved in the reduction to M4&%6. If
we do take an SU(N) subgroup of O(32) as the GUT
group, there are still further potential problems
beyond the 1ack of family unification. For example,
if we were to choose SU(5) and the embedding
O(32) [SU(5) U(1)] S O(22) the U(1) charges
are 32= 5+, + 5' t+ 22(1)o. Hence,

496 = (10+2+ 10' 2) + 22 (5+ t + 5', ) + 24O+ 132 ( I )o

for both the fermions and the scalars. Thus although a coupling 10f5f5,' occurs, 10f10f5, is excluded by the
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0(32) symmetry and the up quarks would remain massless. Solution of this involves a more complete treatment
of the spectrum of scalars on M4 and is analogous to the familiar gauge hierarchy problem.

For the string with gauge group E(8) S E(8)' the situation with respect to allowed GUT s is quite different and
really more promising. Here, at least, there is a chance to say something about families.

Several maximal subalgebras of E(8) are potentially relevant. Here we describe only the more interesting cases
which are based on E(8) SU(3) S E(6), 248 = (8, 1) + (1,78) + (3, 27) + (3",27'); on E(8) 0(16),
248 = 120+ 128; and on E(8) SU (9), 248 = 80+ 84+ 84'.

Let us consider the sequence E(6) 0(10) SU(5) of GUT groups first. For E(6) we consider the subalge-
bras E(8) E(6) S SU(2) S U(1)& and E(8) E(6) S U(1)2 S U(1)& under which the complex 27's
transform as

and

(27, 2;1) + (27, 1;—2)

(27;1, 1)+ (27;1, —1) + (27; —2, 0),

(3a)

(3b)

respectively. Corresponding to (2a) we consider the compact manifold N6= S4&& S2 with an SU(2) instanton
(charge It) on S4 and a U(1) monopole (charge MI, an integer multiple of the minimum allowed Dirac charge) on
S2. The chiral Weyl spinors on M4 are then simply (IIMt)27's. For the simplest vacuum configuration It=1,
M~ = 1 this gives just one family. Corresponding to (2b) we consider N6= S2&& S2X S2 with the three two-spheres
labeled i = 1, 2, 3, respectively. The gauge field is in a monopole configuration (charge M, ) on (S2); for the gauge
generator

U(1)',„,= a,U(1), + b;U(1) .

From (3b) we find that the number of chiral 27's on M4 is given by
3 3

Il (~'+ b') + Ill. (a; —b; ) —8aIa203 —6a~a2a3+ 2(a& b2b3+ a2b3bt+ a3bI b2).

(4)

(5)

The coefficients a; and b; are subject to the requirement that 2a, and a, b, are integers. With any product of
monop»e charges M = M&M2M3 including M = 1, Eq. (4) can give any integer number of families.

With reduction of the GUT group still further to 0(10) or SU(5) the number of families obviously remains
unrestricted. Furthermore, in these rank-four and -five groups any family unification is known to be impossible.

Another maximal subalgegra is E(8) 0(16) which might suggest spinors of larger orthogonal groups. Obvi-
ously 0(18) is impossible. For 0(14) we may take the subalgebra 0(14) S U(1), and a manifold

(S2) $
x (S2)2 x (S2)3 with monopole charges Mt, M2, M3 Since. now the 0 (14) complex part [120 of 0 (16)

remains real] gives

128 = (64;1)+ (64', —1) (6)

we obtain M64 s and hence 2M families but here we will obtain also 2Mmirror families.
For nontrivial incorporation of chiral families, without mirrors, the rank must be at least 6 and hence SU(7) and

SU(8) are the only such subgroups; unfortunately we may not use an unbroken SU(9) since there is no room for
the topological mechanism which yields chiral fermions on M4. Using SU(8) U(1) and the usual monopoles
on N6 = (S2) we have

248 = (63;0) + (8; + 3) + (8', —3) + (1;0)+ (56; + 1) + (56', —1) + (28; —2) + (28', + 2) .

This gives on M4 the chiral fermions

M [56+8(28') + 27(8) ]

(7)

(8)

with M = M&M2M3 = integer. This contains a multiple of six families; the only simple compactification we found
which gives such a restriction is this one with SU(8).

If spontaneous compactification breaks the symmetry further to SU(7) S SU(2) Ca U(1) &
or

SU(7) U(1)2 U(l)&, we have

248 = (48;1;0)+ (7, 2;3) + (7', 2; —3) + (1,1;0)+ (1,3;0) + (35, 1;2) + (35', 1;—2)

+ (21, 2; —1)+ (21', 2;+1)+(7, 1;—4)+ (7', 1;+4), (9a)
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and
248= (48;0, 0)+ (7;3, +1)+(7', —3, +1)+2(1;0,0)+ (1;0, +2)+ (35;2, 0)+ (35'; —2, 0)

+ (21;—1, + 1) + (21';+ 1, +1)+ (7;—4, P) + (7'+ 4 P), (9b)

S[Tr(A 'A ')1 (12a)

S Tr(A"A"A"A")
= „,S[Tr(A 'A ')] (12b)

respectively. Under compactification on N6 ——S4xS2,
(9a) gives some multiple of [21+3(7')] and hence
trivial family replication [because the 35 is singlet
under SU(2)]. Compactification of (9b) on N6= (S2) &

(S2)2x (S2)3 with U(1)',„,= a;U( 1 ) &
+ b U( 1 )2

gives M4 the chiral fermions

m [21+3 (7') ] + n [35+2(7') ] (10)
with m+ n familiess where

I = —2(ata2a3+ atb2b3+ a2b3b~+ a3b/b2),
(1la)

n = 8ata2a3. (1 lb)
The number of families (m+ n) corresponds (within
an unimportant sign) to that in the E(6) model of Eq.
(4). However, here there is the distinct advantage that
the families are nontrivially unified, i.e. , on expansion
into irreducible representations of SU(7) the coeffi-
cients have no common factor; this requires that
m, n ~ 1 in Eq. (9) and m, n are relatively prime. ~

So far, we have ignored the isometry gauge group of
%6. This isometry is too small to contain all of
SU(3), S [SU(2) jm U(1) ],„, where the subscript
"ew" means "electroweak, " because that would need
at least seven compact dimensions. If we were to put
only SU(3), in the isometry group, we would neces-
sarily obtain mirror fermions because of the direct
product structure. Hence, we may consider putting
[SU(2) S U(1)],„in the isometry group and leaving
SU(3), in G. This requires an isometry group with
complex representations, hence excluding, e.g. ,
N6 —S6, S4x S2, S2x S2x S2, K3x S2, G2lSU(3),
SO(5)/SO(3) S SO(2). The cases with a complex
isometry, e.g. , CP3 or CI'2 x S2, would allow us to con-
sider such a non-grand-unified view.

The absence of triangle anomalies in M4 requires
further discussion. For O(32) this uses extra condi-
tions on the compactification, analogous to the Dirac
quantization condition, as discussed in Ref. 7; in our
present brief discussion of O(32) we did not use this
explicitly. For E(8) S E(8)' the absence of triangle
anomalies is guaranteed already by the algebraic
features of E(8). Because there are no irreducible ten-
sors between second and eighth rank we have the
peculiar property of the hexagon anomaly that

STr(A 'A 'A 'A 'A 'A ')

I

where A ' are generators of E(8) in the 248 represen-
tation. Equations (12) have dramatic consequences.
Let us take E(8) Gx FI where G is the unbroken
gauge group on M4. Suppose that

248 = X.gt x b; (13)

where g;, h; are irreducible representations of 6, H
respectively. The triangle anomaly (2) will be propor-
tional to7

3 —
J X,. Trz J (Trz E' ——,

' Trz K trR2) (14)

where J, IC are Lie-algebra —valued field strength two-
forms corresponding to G, 0, respectively, and R is
the curvature two-form. Equation (14 ) is equivalent
to evaluation of Tr(J K ) and Tr(J3K) in the adjoint
of E(8). With use of Eqs. (12) these are all propor-
al to Tr(JK) which vanishes since one may always

choose an orthogonal basis where Tr(A 'A ') —5, ~ .

Hence no subsidiary conditions need ever be explicitly
considered, even though such conditions are actually
being met by compensation with the second E(8)' in
E(8) S E(8)'.

On the question of "shadow matter, "7'0 i.e. , light
chiral fermions transforming under the second E(8)',
this can be avoided in some cases. For example, in an
N6 ——S4x S2 compactification the instanton on S4 must
be compensated by an anti-instanton of E(8) ' but the
monopole on S2 need not have a shadow monopole,
which allows no light E(8)' matter. Of course, E(8)'
matter may or may not be desirable.

In our analysis we have approximated the string
theory by a low-energy truncation where the field
equations parallel the classical Einstein- Yang-Mills
field equations. Our compactification schemes solve
these classical equations and hence the complete string
equations in the same approximation. &e should
point out that the supergravity equations in ten dimen-
sions" involve also a scalar field which in the classical
field equations disallows'2 any compactification which
preserves four-dimensional Lorentz invariance. How-
ever, naively giving a nonzero vacuum value for the
Yang-Mills field strength leads, classically, to an ever
increasing and arbitrarily large vacuum value for this
scalar field. We may therefore suppose that when this
large vacuum value approaches the Planck mass, the
classical equations considered in Ref. 12 became un-
reliable and the associated no-go theorem ceases to ap-
ply in the complete string theory.

The string theory with gauge group 0 (32) or
E(8) S E(8) has several outstanding problems. The

1116



VOLUME 54, NUMBER 11 PHYSICAL REVIEW LETTERS 18 MARcH 1985

first is whether or not it is truly a finite quantum
theory. This would already be a remarkable achieve-
ment since we know no other consistent quantum
gravity. Second, we may hope that the string underlies
a complete unification of gravity with other particle
forces. This requires a much more detailed knowledge
of string dynamics than is available at present, and is
necessarily less probable. Nevertheless, it is this most
optimistic philosophy that we have adopted.

It is a pleasure to acknowledge interesting discus-
sions with John Schwarz. This research was supported
in part by the U. S. Department of Energy under Con-
tract No. AS05-79ER-10448.

Note added. —We have received a related paper by
Candelas, Horowitz, Strominger, and Witten' who
discuss the additional assumption that unbroken su-
persymmetry survives in four dimensions.
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