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The quantum continuum action for gauge theories in two dimensions is constructed in the axial
gauge. For non-Abelian groups the action differs from the usual expectations by nonperturbative,
noncoercive corrections, whose role is to ensure gauge invariance for the quantum field theory out-
side of perturbation theory. Consequently, ordinary perturbation theory and semiclassical approxi-
mations become inapplicable. Similar conclusions are expected to apply in more dimensions.

PACS numbers: 03.70.+k

Consider a classical field theory whose action possesses some symmetry. Suppose we wish to quantize the theory
using the path-integral approach in such a way as to preserve as much of the symmetry as possible. (One does not
know a priori whether spontaneous symmetry breaking will occur or not.) It is generally believed that if the regu-
larization scheme does not manifestly break the symmetry, one must use in the functional integral an action hav-
ing only symmetric terms with (in general) cutoff dependent coefficients. Except for a few cases for which
rigorous proofs exist, this belief is inspired by perturbation theory, where such a procedure produces renormalized
Green’s functions obeying the correct Ward identities. On the other hand, a counterexample to this rule has been
known for many years'; for a nonrelativistic particle free to move on the surface of a sphere S? the correct path in-
tegral for computing the propagator is

(Q,T10,0) = [DQ (1) exp(— (l/ﬁ)J;sz[%ézwL L 5in2992— 182(1+ 1/sin%0)1}. 1)

The quantum action differs from the classical one by a nonspherically symmetric potential term. This term arises
from a careful definition of the functional integral and forms the basis of the Itd calculus.? It is typical of function-
al integration on curved spaces.?

In a recent paper,* Richard and I pointed out that, surprisingly, the presence of the nonsymmetric Itd term in
Eq. (1) is intimately related to the insistence that the quantum theory does have spherical symmetry. Indeed, sup-
pose that the infinitesimal kernel were

1 1] (6;41—0)%  sinf;sing, (9, —9;41)?
(Q41€lQ,,0) = 2me exp[ 3 [ 2e + 2e @)
for e— 0. By spherical symmetry, the integral

I=[d0 Q€00 3)
must be independent of Q. at least up to order €!. A simple computation* yields

fie 1
I=exp| 2 f1+ +0(e?), 4
exp[ 3 R (€?) 4)

and proves that the kernel in Eq. (1) is indeed spherically symmetric.

In our paper* we also argued that similar nonsymmetric terms should arise in dimensions higher than one in
both nonlinear o models and gauge theories. In the present Letter I would like to illustrate this effect by consider-
ing gauge theories in two dimensions. The classical action [for SU(2)] is

Sa=— [d®x LFi,Fl,, Fi, =08,4, 8,4, —ge Al AB. (5)

As a quantum theory, in perturbation theory there are no divergences, hence no nontrivial renormalization of g is
to be performed and the action in Eq. (5) is normally supposed to be the correct quantum action. I would like to
demonstrate that this is not the case for SU(2) (which is a curved manifold), although it is true for U(1) (which is
a flat manifold).

For a gauge invariant definition of the functional integral I shall take Wilson’s action®:

Sqm= — (1/2a%g?) 2 tr U, (n) U,,(n+y.)U,I (n+p+v)U] (n+v)+Hec., U,,,(n)=exp[i%1 ‘B,(m)]. (6)

n, uv
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By use of B, (n) =agA,(n), one easily verifies® that for ag— 0
Sem=—+ [ dx Fi Fi, + 0(ag?). €

The basis of the analysis to follow, indeed of the It6 calculus, is to show that some of the higher-order terms in Eq.
(7) survive in the path integral as ag — 0 and to give a prescription for taking them into account.” For this pur-
pose it is convenient to use the axial gauge A, =0. Equation (6) becomes

Sqm=— (1/a%) 3, tr U (n) U] (n+#) + Hee. = 3\[— (1/a%?) D tr Up(n) U (n+#) + Hee.]
=3[~ (4/a%?) 3 s(n) -s(n+7)], ®)

s=(cos+B,Bsin+B), B=(B)Y2, B=B/B, 0<B<2m. 9)

Equation (8) describes a system of identical uncoupled one-dimensional chains of S° spins at temperature a2g%/4.
Computing the expectation value of a Wilson loop in the original gauge theory amounts to computing the spin-spin
correlation for the one-dimensional spin model. This is an exactly solvable problem, the answer being

(s(0) -s(m)) =exp(— +a%g’m). (10
In the coordinates used [Eq. (9)] the partition function we are studying is

3/2 s 1
sing By

2 f
0<B;<2r 9p2 i
4

malg?

ZIE H
i

xexp{— (4/a’g?) [ 3, cost B;cos+ B4+ B, B, sind B;sind B, (1}, (11)
i

while the spin-spin correlation function is
(s(0) -s(m)) = (cosTB(0) cos3B(m) +B(0) -B(m)sin+B(0) sins-B(m)). (12)

In the continuum limit ag — 0, one may be tempted to assume that only quadratic terms in B; — B, ; need to be
retained in the exponential in Eq. (11). That is

3/2

a1 [ | [ |
. o 2 siny B; ) 4 siny B;siny B; 4 5
,,?I_l?ozl_al,'_r?o[[’l nalg? ﬁ)sa,szn 287 dB,-]exp[ azgzz,.: 2B,B;+ (B;—B;+1)
.1 -1
. . 1 singB;siny By
+%Bi'(Bi—Bi+l)Bi+1'(Bi—Bi+1)[Z_ BB+, - ]]
= [H(1/27T)3/2fd2A,-]exp[— S5(A—A ). (13)
i i

If this expectation were correct, using the Gaussian measure in Eq. (13) to evaluate the spin-spin correlation in Eq.
(12) should yield the answer in Eq. (10) for ag— 0. A simple computation shows that in perturbation theory this
is the case for U(1), but not for SU(2) starting at O(a*g*). An additional test was done numerically, using the
Monte Carlo technique.® The results are shown in Fig. 1 for a2g?= % (expected correlation length 10) on a 52-
site lattice (five correlation lengths), with the external spins frozen at A=0. They show a dramatic discrepancy
between the exact result Eq. (10) and its approximation based on the naive quantum continuum action Eq. (13).
For comparison, Fig. 1 contains also the results of the computations done for U(1), (a2g?= —‘;—, expected correla-
tion length 10). The exact answer and its Gaussian approximation agree very well.

As expected, retaining only terms of order (B;,— B, ;)% a%g? is too naive, because the metric is nonflat. The
correct computation could be done following McLaughlin and Schulman.? Given the metric for functional integra-
tion, they established a procedure for generating the It6 terms. Alternatively, for the case of S3, one can repeat
the arguments and manipulations leading to Egs. (3) and (4) to obtain the correct (quantum) continuum action to
be used in the functional integral. Straightforward, yet lengthy calculations lead to the following possible expres-
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FIG. 1. (a) The spin-spin correlation function for SU(2), and (b) U(1). For SU(2) the Monte Carlo data are shown both
for the naive action (crosses) and the Itd action (lozenges).

sions:

(B, ~B,;41)?

ag— 0]~ 7ra2g2

Z,= lim n[__z_

3/2f sin?(5B;) 2B 4 sin(5B;) sin(+B;4,)
0<p<2m B2 HEXPIT g2 ; 2B,B;

1 sin(+B;)sin(+B;4)
4 BiBi+l

+%ﬁ,~'(Bi—Bi+1)ﬁi+1 '(Bi_Bi+1)[

wa‘et VB,Ité(Bi)] . (4

5 cosy B 9 3BcostB BcosyB 7

Varo(B) = — - teg T N 3
B 1t 32sin?4B  BsinyB 8B  16sin*tB  16siniB 32

or in spherical coordinates
T T 2m
T 2,213/2 i 2 :
Zl—a?_rp()[|i|(2/7ra g% J:) sin aidaiﬁ sm,B,-d,B,fO dnj;i]

xexp{— (4/a’¢?) 3,15 (a;— ;1 )2 +sina;sine; 4 13 (8, — B;41)?
i
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FIG. 2. (a) the Itd potentials Vj,,(B), and (b) Vg ,;(a=1+m,8).
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FIG. 3. Some typical spin configurations: (a) with the
naive action, and (b) with the It6 action.

Both potentials ¥V, and Vg, are noncoercive (see
Fig. 2). Their effect is to force the spins to take all
values over S? with equal probability and restore the
spherical symmetry in the functional integral. This
fact is illustrated in Fig. 3, where I show some typical
(warm) Monte Carlo spin configurations with the
naive action of Eq. (13) and the Itd action of Eq. (15).
Finally, in Fig. 1 one sees that this latter action pro-
duces a spin-spin correlation function in reasonable
agreement with the exact dependence.

Conclusions.—1. The expectation that S, differs
from S, only by the cut-off dependence of certain
coefficients is false when the metric of functional in-
tegration is nonflat [such as in O(N) N = 3 nonlinear
o models and non-Abelian gauge theories]. More-
over, Sgy contains, in general, nonperturbative,
noninvariant terms even with an invariant regulariza-
tion scheme.

2. The presence of the noncoercive Ito terms in Sy,
makes perturbation theory or semiclassical approxima-
tions impossible, since no well-defined regions in field
space dominate the functional integral, the field being
driven by the Itd potential all over the manifold.!°

3. Although at the present time the It0 terms can be
worked out only in two dimensions, from the analysis
in Ref. 4 it seems pretty certain that similar, albeit
more drastic, changes of the action occur in more
dimensions. These modifications should be of order
g* and higher.
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