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Scaling Behavior of Windows in Dissipative Dynamical Systems
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Global scaling behavior for period-n windows of chaotic dynamical systems is demonstrated.
This behavior should be discernible in experiments.

PACS numbers: 03.20.+i, 03.40.—t, 05.40.+j

The dependence of the trajectories of nonlinear
dynamical systems on a system parameter has recently
been the subject of intense interest. ' It is a com-
monly observed feature of chaotic dynamical systems
that, as a system parameter is varied, a stable period-n
orbit appears (by a saddle-node bifurcation) which
then undergoes a period-doubling cascade to chaos and
finally terminates via a crisis3 (in which the unstable
period-n saddle created at the original saddle-node bi-
furcation collides with the n-piece chaotic attractor;
e.g. , see Fig. 1 and caption). We call the parameter
range between the saddle-node bifurcation and the fi-
nal crisis a period nwindow-. Perhaps the most widely
known example of a window is the period-3 window in
the chaotic parameter range of the quadratic map,
x„+t=p, —x„(cf. Fig. 1). In fact, the quadratic map
possesses an infinite number of such windows, and
these are generally believed to be dense in p, . Further-
more, this situation seems to apply for a wide class of
chaotic dynamical systems4 (including multidimen-
sional systems) .

It is the purpose of this Letter to point out and dis-
cuss a type of quantitative universal behavior in the
global structure of windows. This behavior should be
discernible in experiments.

Consider a window and a system parameter p, . Let
p, o, iu, d, and p, , denote the values of p, at the initial
saddle-node bifurcation, the first period-doubling bi-
furcation, and the final crisis. Then form the normal-
ized crisis value for that window,

the following statement applies to any chaotic dynami-
cal process with windows.

1. Pick any small e & 0 and some interval of the system
parameter which includes attracting chaotic orbits. Deter-
mine the fraction of windows ofperiod ~ n in the chosen
parameter interval for which m, deviates from ~ by an
amount less than e, I m, —

~ I & e. Then this fraction will

approach 1 as n ~, no matter how small& is.
Several comments are in order concerning State-

ment 1:
(a) From Tables I and II it appears that the period n

does not have to be very large for many of the ob-
served m, to be close to ~ .

(b) The reason for our formulation of Statement 1

, in terms of the fraction of windows is because, even for
arbitrarily high-period windows, there may be some
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Table I gives results for m, for all primarys windows of
the map, x„+t= p, —x„2, in the range 1.54 & p, & 2.00
that have window width p, ,—p,o) 2.3x10 . Tables
II and III give similar results for the Henon map,
x„+t

= 1 —p, x„+y„, y„+ t = 0.3x„. Table II applies to
all primary windows in the range 1.12 & p, & 1.43 with
window widths p, , —

iu, o & 2 x 10 while Table III is
for 1.15 & iu, & 1.17 and p, , —p, o & 5 x 10 '6. It is evi-
dent from these tables that, for many of the windows,
m, is close to 4 . Furthermore, this tendancy increases
as the window size becomes smaller. Also, using ex-
perimental results supplied to us by P. Linsay, we
determine that, for the largest window in Fig. 1 of
Brorson, Dewey, and Linsay, m, =

4 to within the ac-
curacy of the available data ( +5%). We claim that
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FIG. 1. Computer-generated bifurcation diagram for the
map x„+l= p, —x„ in the range 1.72 ( p, ( 1.82. A period-3
window exists in this range. The window begins with a
saddle-node bifurcation (at jtA,

= p, o
—=1.75) at which stable

and unstable period-3 orbits are born. The unstable orbit is
indicated by the dashed line in the figure. The stable
period-3 orbit goes through a period-doubling cascade and
becomes chaotic as p, is increased. The end of the window
occurs at the crisis, p, = p, ,=—1.79, when the unstable
period-3 created at the original saddle-node bifurcation at
p, = p, o (dashed line) collides with the three-piece chaotic at-
tractor.
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TABLE I. Results for all primary windows with p, ,—p, o ) 2.3 && 10 in 1.54 & p, & 2.00
for the map x„+i= p, —x2. The last column gives the relative error ~m, —

4 ~/(~).

Window size Period p, o mc

Relative deviation
of m, from 4

9

0.040 327 49
0.008 961 72
0.002 211 43
0.001 744 14
0.001 002 69
0.000 389 01
0.000 284 60
0.000 264 43
0.000 233 746

1.750 000
1.624 397
1.940 551
1.860 587
1.673 954
1.711036
1.595 649
1.907 251
1.555 257

2.176
2.219
2.241
2.241
2.242
2.247
2.248
2.249
2.249

0.033
0.014
0.0042
0.0038
0.0036
0.0013
0.000 88
0.000 64
0.000 29

few for which m, deviates substantially from —,
' (an in-

dication of this is provided by the period-15 window in
Table II).

(c) Statement 1 relates to global properties of a win-
dow in that m, is a property of the map for the entire
range of p, within the window.

(d) An alternative statement to Statement 1 would
be that, within a period-n window, the dynamics gen-
erated by the nth iterate of the map, when linearly re-
scaled, is typically well approximated by the canonical
one-dimensional quadratic map,

2
&n+ i &n+ &n m,

where the form of (2) is such that the original saddle-
node bifurcation and the first period doubling occur at
m = 0 and m = 1, respectively. Thus normalizations,
as in (1), are automatic [e.g. , for (2) the final crisis is
at m= —,'].

(e) Remark (d) implies that the choice of the quan-
tity m, is somewhat arbitrary in that a statement analo-

gous to Statement 1 applies to any other parameter
value marking a characteristic event in the window;
e.g. , replace Eq. (1) by m3 (p 3 jap)/(p d p, p)
where p, 3 marks the beginning of the period-3n win-
dow within the period-n window.

Concerning comment (b), an illustration is instruc-
tive. The quadratic map, x„+t

= p, —x„, has a period-3
window within its chaotic band (Fig. 1), and the value
of m, for this window is —,

' —0.074. . . . Now consider
a period-n window with n large, and assume that (2)
provides a good approximation to the dynamics within
this window. Clearly, within this window there is a
period-3 n window with m, approximately equal to
—,
' —0.074. . . . Thus, if one considers the class of

windows of period 3n which occur as windows within
period-n windows, then, for this class, m, is not ex-
pected to approach —', as n ~ (rather it is expected
to approach —,

' —0.074. . .). However, according to
our claim in Statement 1, as n is made large, if one
considers all orbits of period-3n (not just those which

TABLE II. Henon-map results for p, , —p, o & 2& 10 and 1.117 & p, & 1.427. The rela-
tive error (last column) is i m, —

4 ~/( 4 ).

Window size Period p, o mc

Relative deviation
of m, from 9

0.045 069 88
0.009 561 20
0.001 970 90
0.000 846 33
0.000 492 77
0.000 330 56
0.000 322 51
0.000 301 18
0.000 245 99
0.000 229 62
0.000 229 52

7
7
8
9
8

10
15
9

13
10
9

1.226 617
1.299 116
1.121 835
1.172 384
1.323 307
1.176 765
1.421 811
1.402 762
1.353 915
1.142 882
1.293 955

1.635
2.032
2.229
2 ~ 245
2.248
2.244
1.637
2.249
2.211
2.246
2.246

0.27
0.097
0.0093
0.0022
0.000 97
0.0027
0.27
0.000 36
0.017
0.0018
0.0019

1096



VOLUME 54, NUMBER 11 PHYSICAL REVIEW LETTERS 18 MARCH 1985

TABLE III. Henon-map results for p, —p,o) 5& 10 and 1.15 & p, & 1.17.

Window size Period m,

Relative deviation
of m, from 9

0.000 080 34
0.000 026 07
0.000 009 10
0.000 008 84
0.000 008 71
0.000 005 02

11
12
16
18
13
16

1.159704
1.150007
1.160453
1.151 494
1.155 612
1.167 380

2.250 16
2.249 18
2.249 69
2.251 51
2.250 25
2.249 83

0.000 071
0.000 36
0.000 14
0.000 67
0.000 11
0.000 074

occur as windows within period-n windows), then the
vast majority will have m, closely approximated by —,

'
In this respect the type of universal behavior discussed
here differs from other previously studied universal
behavior.

Because of the situation just described, it appears
that it may be difficult to establish Statement 1 in a
rigorous way. Thus, at this point, we can only offer ar-
guments that support it but do not prove it. The
remainder of this paper is devoted to such an argu-
ment for the case of one-dimensional maps a single
quadratic maximum. (We emphasize however that,
based on Tables II and III, we believe that Statement 1

also applies to multidimensional systems. )
Consider a period-n window with n )) 1. At the fi-

nal crisis for the window there will be n chaotic bands,
Si,S2, . . . , S„, each of width s&,s2, . . . , s„, where we
have that under the action of the map S& S2S„Si, and we choose Si to include the
critical point, i.e. , the maximum of the map function.
(There must be one such interval, since otherwise
there would be no folding and hence no chaos. ) We
assume for now that the sj are small and that for j&1
the location of the Sj are sufficiently far from the criti-
cal point that the map in the intervals S2,S3 ~ ~ . S„
may be regarded as approximately linear. Let
denote the magnitude of the slope of the map function
in the middle of the interval j (ja 1). Thus
sj+ ] Xjsj n ~j)2, and s2 =—Esi . (For example,

for x„+i= p, —x„.) Application of these esti-
mates to the entire cycle yields s~ = EA." 'sq, where A.

is defined by A.
" '=A. 2X3 . A. „, and we call A. the re

duced Lyapunov number. Thus

si

Typically we expect A. to be almost constant within the
window and larger than 1, reflecting the fact that the
orbit, for parameter values outside the window, is
chaotic. 7 Within the assumptions above, the n-times
iterated map restricted to Si can be regarded as the
composition of one map, which is quadratic, with n —1

approximately linear maps. The result is an approxi-
mately quadratic map. The typical closest approach of
one of the Sj (j= 2, . . . , n) to the critical point is I/n,
which is much greater than si since

for large n As . n increases, (5) becomes better and
better satisfied, and we expect that the composed map
is more and more closely approximated by a quadratic
map. Furthermore, the range of p, within the window
is small; in fact, as we shall show,

p
—2(n —» (6)

Thus the variation of the A.j with p, can be neglected,
and the effect of varying p, is predominantly that of
raising or lowering the level of the critical point.
Hence the n-times composed map can, under linear re-
scaling, be put in the form of Eq. (2) and Statement 1

follows. This will be shown in more detail shortly. To
see why we must formulate Statement 1 in terms of
the fraction of orbits, recall our assumption in the
above heuristic argument that the closest approach of
S (j= 2, . . . , n) to the origin was —1/n. This state-
ment is based on the idea that the orbit for
j= 2, . . . , n is, in some sense, hke a chaotic orbit with
Lyapunov number X. According to this point of view,
most of the period-n orbits will satisfy our assumption.
However, when considering all the —2" '/n windows
of period-n, there is always some "probability" that
one of the elements Sj for n ~ j~ 2 will fall too close
to the critical point for the linear approximation to
hold. As we look at higher n and include more orbits,
we should encounter some band orbits of this type. 8

We now outline more formally how the rescaling
yielding Eq. (2) can be obtained. Let T(x, p, ) be a
twice differentiable one-dimensional map with a single
quadratic maximum (at x = 0) and a parameter p, ,
x„+t

= T(x„,p, ). Assume that T has a period-n win-
dow in p, p & p, & p, At p, = p, p there is a saddle-node
bifurcation. Hence T„"(xj,p, p) =1, where xj are the
points of a period-n orbit, xj+ i = T(xj, p, p) with
x&+„=x&, T" denotes the n-times composed map and
T„"= AT"/Bx. Let j= 1 be chosen so that x& is the
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v„it ———vk+ —,
' f„„(0,0)vkz+ fq(0, 0)q, (7)

where the error in (7) can be shown to be small for
large L =A." ' (i.e. , large n), provided that points of
the x orbit, other than the x„k, do not come too close
to x = 0, as in Eq. (5). Finally, if we set
u = f„„(0,0)v/2, m = f„„(0,0)fq(0, 0)q/2, Eq. (7)
becomes Eq. (2). [Note, in addition that the scaling
q = (p, p, p)L imp—lies the estimate, Eq. (7).]

In conclusion, we have shown that typical period-n
windows exhibit a global scaling structure. Numerical-
ly, we find that the scaling is apparent at low n. We
have also seen that it is observable in the data of an ex-
periment, and we believe that this behavior should be
discernible in experiments generally.
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closest xj to x=0. Define x(p, ) so that x(p, p) =x&
and T„"(x,p, ) = 1. [Note that for p, ) p, p, x(p, ) is not a
member of a period-n orbit. ] Let

L = T„(x2,p, p) T (x3, p p). . . T (x„,p, p),

where T„=rJT/rlx. That is, L =A." ' at p, =p, p. Now
introduce the rescaling v = (x —x)L and q = (p,
—p, p)L . Consider x„k for x„„ in the region close to
the maximum of T [i.e., x„k —L ' (cf. Eq. (3)] and
the map x„l„+»=T"(x„„,p, ). We define a map f,
v„+, f(v——k, q), where vk corresponds to x„k. Substi-
tuting the definitions of v and q into x„tk+ tl= T"(x„„,p, ) and expanding for large L we obtain
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that the fraction of period-n windows which are primary is
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Sin the light of Eq. (6), we offer the following comment
concerning Table I. In Table I the windows are arranged in
order of decreasing window size (leftmost column), and we
see that the relative deviation of m, from 4 (rightmost
column) decreases regularly through two orders of magni-
tude. Thus the table suggests that smaller window size im-
plies smaller deviation (as do our heuristic arguments).
Coupled with (6), the Table I result implies that higher-
period windows tend to have smaller deviations.
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