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Scaling in Spin-Glasses
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Many results of the mean-field theory of spin-glasses violate simple scaling laws, including the
magnetic field dependence of the transition lines, crossover effects of random anisotropy, and criti-
cal behavior in the ordered phase. These violations arise from two dangerously irrelevant variables.
Below eight dimensions some mean-field exponents change and at d = 6 scaling is restored. Below
d = 6 all scaling laws should be valid implying that the critical properties of real spin-glasses should
be simpler than in mean-field theory. Experimental consequences are discussed.
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The nature and even the existence of the spin-glass
(SG) transition in three-dimensional systems with
short-range interactions are currently debated. Fre-
quently, these questions have been studied, experi-
mentally' 5 as well as theoretically, 6 9 from a
phenomenological scaling approach. This assumes that
singularities which appear in static and dynamic quan-
tities as the SG transition is approached both from
above and from below can be described by simple scal-
ing laws as for ordinary critical points.

A great deal of theoretical information about the SG
transition has been provided by the mean-field (MF)
theory which is expected to be valid in high dimen-
sions. '0" However, many results of the MF theory
violate the ordinary scaling laws, especially those in-
volving the behavior belo~ the transition temperature.
One expects generally that hyperscaling will be violat-
ed above the upper critical dimension, d, . '2 However,
scaling laws which do not explicitly involve the dimen-
sionality d are usually obeyed in all numbers of dimen-
sions. Moreover, mean-field theories are usually con-
sistent with the scaling laws involving d at d, . Howev-
er, for spin-glasses, violations of scaling in the MF
theory seem to be rather more serious. They involve
scaling relations which do not explicitly depend on d.
In particular, the usual scaling relation between mag-
netic field and temperature is not obeyed and there are
apparently two order-parameter exponents. Further-
more, the MF results are not consistent with all the
expected scaling relations involving d (in particular the
Josephson relation) at d, = 6 which is the upper critical
dimension of the SG transition.

Understanding the origins of the scaling violations
in MF theory is important in light of the extensive ef-
forts that have been invested in the comparing of ex-
perimental results on three-dimensional systems with
MF theory. In particular, it is essential to know
whether scaling violations are a general property of
spin-glass transitions or anomalies of the MF limit. If

the latter is correct, then we must ask what are the ap-
propriate scaling laws for SG transitions in, for exam-
ple, three-dimensional systems with short-range in-
teractions. From a theoretical point of view, under-
standing the scaling behavior of the SG critical fixed
point in high dimensions in a prerequisite for perform-
ing renormalization group calculations of the effects of
fluctuations on SG transitions.

In this paper, we show that the violations of scaling
in MF theory are the result of the existence of two
dangerously irrelevant variables. We argue that the
anomalous MF results apply only for d ) 8. For
6 ( d ( 8, the exponents are modified but can still be
determined exactly. As d approaches 6, the normal
scaling laws are restored and for d ( 6 they should
hold. We thus expect that the SG transition in three
dimensions should obey ordinary scaling laws. At the
end of this paper, we summarize the consequences of
our results for the scaling behavior of SG transitions in
three-dimensional systems with short-range interac-
tions; these should be valid as long as the SG transi-
tion temperature is nonzero.

The simplest violation of scaling in MF theory is the
behavior of the phase diagram in a weak magnetic
field, h. Above the zero-field transition temperature,
Tg, the crossover from the zero-field regime to the
noncritical (paramagnetic) regime occurs at a reduced
temperature t —= T/Tg —1 which is proportional to h

with the exponent b, of the ordering field h equal to
2. This crossover can be seen, for example, in the
nonlinear magnetic susceptibility which is proportional
to the spin-glass susceptibility. '3 The value b. =2 is
consistent with the scaling law 5=1—n/2+y/2, in-
volving the MF exponents (defined above Tg) y = 1

and n = —1. On the other hand, the SG transition in a
finite field occurs in an Ising system at t, (h) ——h
with Ht = 2/3 [the Almeida-Thouless (AT) line]. '4

This is in contrast to the behavior which is expected
from scaling: Ht = 2//b, . This anomaly of the MF
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theory has been noted previously and has been attrib-
uted to special cancellations. We now analyze how
this and other anomalous scalings arise from a renor-
malization group point of view and show how they are
modified by fluctuations below d = 8.

It is convenient to work with a replicated Ginzburg-
Landau-Wilson effective Hamiltonian. 's This Hamil-
tonian is expressed in terms of the order-parameter
matrix 0 P, the thermal average of which is (S SP)
where S and SP are spins belonging to two different
replicas. For an Ising spin-glass (which we discuss
here for simplicity) we have (dropping unimportant
terms)

0= d"x)g [ ,' t(0—P)'+—,
' (7g P)'1

w X 0~PgPvov~+y X (g~P)4) (1)

ative. By use of dw/dl= —,
' (6 —d) w and integration of

Eq. (2) it can be seen that for 6 & d & 8 the second
term controls the long-distance behavior of y so that
y(l) = —w'(l).

The critical behavior of various quantities can be
computed by integration of the recursion relations
dt/dl = 2t, dw/dl= —,

' (6—d) w, dh2/dl= (1+d/2) h,
and Eq. (2), until t(l') = te ' is of order 1 and then
using the mean-field results with w(l') and y(l')
which should be valid since the Hamiltonian at scale
e' is far from critical. For example, for 6 & d & 8 the
temperature dependence hAr(t) of the Almeida-
Thouless line [i.e., the inverse of t, ( h) ] is given by

h' (t, wy) —e "+ "' h' (t(l ),w(l ),y(l ))
ital/2+d/4 y t(l )3 it [d/2

—1

w(l )'

where the sums run over replica indices 1 to n with the
restriction that 0 P=0 for n =P and the limit n 0 is
taken. The bare value of the coefficient y is negative
and that of w is positive. In more than six dimensions,
w and y are irrelevant at the critical fixed point which
occurs at t = 0, and thus the upper critical dimension is
S1X.

Normally, scaling functions can be derived by set-
ting the irrelevant variables equal to 0. However, if a
quantity depends in a singular fashion on an irrelevant
variable, then this cannot be done and the result is that
scaling relations between exponents can be violated.
Such irrelevant variables are said to be dangerously ir-
relevant. '6 The best known example is the coefficient,
u, of the quartic term in a @4 theory above four dimen-
sions. The singular part of the free energy of this
model below T, is inversely proportional to u which
causes the breakdown of hyperscaling for d & 4, i.e. ,
dv ~ 2 —n. Scaling laws not involving d are still
obeyed, however.

For SG's in d & 6, w is similarly dangerously ir-
relevant and causes a breakdown of hyperscaling.
However, because of cancellations of the effects of the
cubic term in Eq. (1) in the limit n 0, the more
strongly irrelevant fourth-order term determines many
of the properties of the low-temperature phase and the
spin-glass transition line as a function of magnetic field
so that y is also dangerously irrelevant.

We now consider the effects of critical fluctuations
for d & 6 and show that they modify some of the ex-
ponents already for d & 8. The only possible source of
corrections to the exponents for d & 6 is the renormal-
ization of y by four cubic vertices (a "box" diagram).
The differential recursion relation for y is (dropping
unimportant terms)

dy/dl = (4 —d)y —Aw4,

where 3 is a positive coefficient so that y is always neg-

yielding 0/=4/(d —2). For d 8 this approaches the
MF result which will hold for all d & 8. At the upper
critical dimension d, = 6, we have 0 t = 1 (up to possi-
ble logarithms) which agrees with the scaling of h with
t above Tg as expected: i.e. , Ht = 2/A. The modifica-
tion of Ht in Eq. (3) was proposed by Green, Moore,
and Bray' on the basis of a one-loop calculation.
Here, we argue that this is exact for 6 & d & 8 and part
of a more general modification of the MF behavior.
All of the quantities which scale anomalously in MF
theory are proportional to powers of y and thus their
behavior will be modified for d & 8.

In the manner illustrated above, we derive the fol-
lowing modifications of the MF results for 6
& d & 8':

(1) Scaling with respect to h and t. —In the Ising case
the transition line has the form i t, i

—h4 " 2 (for
h 0) as shown above. For the Heisenberg case in

t'0MF theory, on the other hand, i t, i

—h H with 0H = 2
(the Gabay-Toulouse line'9 which has incorrectly been
interpreted as an analytic correction ). Again, in-
tegrating the recursion relations leads to 0/t = 4/
(10—d). This agrees with the MF result for d = 8, but
yields HH = 1 for d = 6, which is consistent with scaling
since for d & 6, 5 = 2, also for the Heisenberg case.

(2) Random anisotropy. —The presence of a small an-
isotropy, D, which couples randomly all spin com-
ponents in a Heisenberg spin-glass leads to Ising criti-
cal behavior 21, 22 This manifests itself as a crossover
of the finite-field transition from Heisenberg to Ising
character. One would generally expect from scaling
that this crossover occurs at i t i

—D " with @z = 1 for
d~ d, . In contrast, MF theory predicts that Ising
behavior occurs for gati less than a characteristic scale

tt —D, with @t= 2, whereas Heisenberg behavior~i&r

is seen only for gati greater than tH —D with

@H = —', .22 Using dD2/dl —2D2 which holds for d & 6,
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we find that for 6 & d & 8 fluctuations modify the
crossover exponents to $H= (3d —14)/4 and
= (d —4)/2. Both crossover exponents thus reduce to
@q = 1 for d=6.

(3) Critical properties below Tg. —Studies of critical
fluctuations around the MF theory at high d, ~3 24 as
well as to leading order in 6 —d, ' show that the ex-
ponents of the SG transition in zero field when ap-
proached from above obey the usual scaling laws except
for the violation of hyperscaling for d & 6. However,
the critical properties of the transition when ap-
proached from the SG phase are more complex. Ex-
panding around MF theory ' yields two-point corre-
lation functions which decay with two different corre-
lation lengths: One diverges with an exponent v= —,

'

as above Tg and the second is a much longer length
with v= 1. In addition, the MF theory yields'o" an
infinite number of order parameters Q"i' for the SG
phase, which can be parametrized by an order function
q(x) with 0~ x~ 1. Since all the order parameters
are two-spin operators with the same symmetry, scal-
ing would imply that all combinations of them have
the same critical behavior. Instead, one finds that the
Edwards-Anderson order parameter qE„=q(1) goes
to 0 with an exponent Pq = 1 which is consistent with
the scaling law pq = (2 —n —y)/2 involving the ex-
ponents above Tg. On the other pand, the irreversible
response, " 25 b, (0) = [q(1) —f q(x)dx]/T, which
determines the difference between the ac and the
equilibrium magnetic susceptibilities goes to zero with
an exponent pq= 2. The correlation length g which
diverges as ~t~

't2 below T~ does not depend singular-
ly on y. However, the exponent v= 1 is associated
with a correlation length g which diverges (at fixed t)
as y 0. We find therefore that for 6& d & 8, v is
modified to v=d/4 —1. As d approaches 6, v v

Similarly, replica symmetry breaking disappears
if y 0, and therefore the exponents of quantities
which are associated with it will be modified. Using
do t'/dl = (d/2 —1)0 ~ for all np, one obtains, for
example, that the irreversible response exponent is
Pz = d/2 —2 which approaches P~ = 1 as d 6.

(4) Exchange stiffness constant. —For the isotropic
Heisenberg spin-glass, there is a spin-wave stiffness
constant p, below T, which vanishes at Tg as p, —

~
tl~,

with p, =3.26 On the basis of scaling one expects a
Josephson relation p, = (d —2)v which should hold for
any d ~ d, . But the result p, = 3 is inconsistent with
this relation for d = d, = 6. In a SG phase with no re-
plica symmetry breaking (e.g. , in the limit of infinite
number of spin components), p, given by

1

p, ~ (q'(I ) —
Jf q'(x) dx 1 ~ (y/w') ( t ('

would vanish. Thus, although p, ( l) —p, e d ~', the
Josephson relation breaks down above d = 8 because of
the singular dependence on y. However, below d = 8,

y (l)/w (l) tends to a constant and therefore the
Josephson relation p, = (d —2)v is restored, yielding
p, =2 instead of 3 in d=6.

We now discuss the expected scaling behavior near
SG transitions of three-dimensional systems with
short-range interactions, assuming Tg is nonzero. We
have shown that the anomalous properties of the MF
theory from the point of view of scaling are particular
to spin-glasses in many dimensions and disappear as d
approaches d, = 6. In fewer than six dimensions, w will
have a nonzero fixed-point value and hence so will y.
Their deviations from their fixed-point values will not
be dangerously irrelevant. Thus, while the exponents
will change from their values at d = 6, the scaling rela-
tions between them should be preserved and the SG
transition should obey the usual scaling laws. In par-
ticular, the exponent 2/0 of the finite-field transition
lines, if they exist, should be equal below d = 6, to the
ordering-field exponent 6 = 1 —n/2+ y/2= v(d+ 2
—q)/2=y+P which determines the crossover in the
nonlinear magnetic susceptibility above T~. The
equality 5 = 2/0 should hold for both Ising and Heisen-
berg spin-glasses as demonstrated by our results for
d 6+. This is in contrast to recent claims in the
literature. It should be noted, however, that for d
less than 6, the exponents for Heisenberg and Ising
systems will generally differ. Recent experiments28 on
GdAI yield for both b, and 2/0 the value 5 =3.3. This
value is consistent with the behavior

~ t, ~

—h2 3 for the
AT-like finite-field transition line found in many spin-
glasses. ' ' It is also similar to recent numerical
estimates8 for a three-dimensional Ising SG which
yield 1.3 & v & 1.1 and 71

—0, implying b, = 3.
Although the bulk uniform anisotropy in GdA1 (and
other nominally Heisenberg SG's) is small and it
might thus be expected to exhibit Heisenberg
behavior, the random anisotropy may be sufficiently
strong to lead to Ising behavior. At this stage it is un-
clear whether the apparent agreement between the
measured28 5 and the Ising simulations30 is due to the
effects of the random anisotropy or to a presumably
fortuitous similarity between the Heisenberg and Ising
5's in three dimensions.

For Heisenberg systems with weak anisotropy, the
crossover from Heisenberg to Ising behavior will be
characterized by a single exponent @z which is not
simply related to other exponents. This exponent will
also determine the shift of T~ for small anisotropy,
provided Tg of 3D Heisenberg spin glasses is nonzero.
Recent torque measurements on CuMn below Tg indi-
cate that increasing the amount of random anisotropy
changes significantly the shape of the finite-field criti-
cal line. 3' If the interpretation of this change as a
crossover from Heisenberg to Ising behavior is correct,
then, according to the above, we expect that the non-
linear susceptibility above Tg should also exhibit cross-
over as the amount of anisotropy is changed. Our
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results also imply that the low-field remanent magneti-
zation and qEA (which can be measured via the ac sus-
ceptibility) should have the same critical exponent p.
In addition, the critical exponent of the macroscopic
anisotropy which was foundz6 to equal p~+ pq will be
simply 2P below d = 6.

So far in this paper, we have considered the effects
of fluctuations on the critical behavior of spin-glasses.
An important question is whether fluctuations can also
modify the singular properties [such as the behavior of
the susceptibility for small h or q(x) for small x, as
well as the temporal power-law decay of the correla-
tions23] in the ordered SG phase well below Tg. Such
modifications could be caused by noncritical fluctua-
tions about an ordered fixed point (or fixed line)
which governs the behavior of the SG phase. This
would be analogous to the fluctuation-induced diver-
gent longitudinal susceptibility in Heisenberg fer-
romagnets below T, for dimensions 2 & d & 4.32 Al-
ternatively it is possible that the SG phase is controlled
at all temperatures by the critical fixed point. This is
suggested by the fact that q(x) vanishes for small x
which represents a lack of broken symmetry at the
longest time scales. " In such cases, the low-Tproper-
ties may be modified (perhaps already below d = 8) by
critical fluctuations of the type considered here. In any
case, modification of the SG phase at high d may affect
conclusions about the lower critical dimension23 of the
SG phase which are based on the assumption of
mean-field properties at low temperatures.

Finally, we note that the anomalous behavior of the
crossover from percolation to lattice animals33 for
d ) 6 may arise from a mechanism similar to that dis-
cussed in this paper.
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