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Hard-Sphere Glass and the Density-Functional Theory of Aperiodic Crystals

Y. Singh, t'~ J. P. Stoessel, and P. G. Wolynes
Noyes Laboratory, University ofIllinois, Urbana, Illinois 61801

(Received 22 October 1984)

A density-functional theory of freezing into an aperiodic lattice is presented. With use of free-
energy functionals for inhomogeneous hard-sphere fluids, the stability of a density wave with the
structure of Bernal random packing is evaluated. Although the properties of the transition are
sensitive to the form of the direct correlation function, the present calculations indicate a limit of
metastability at a density p = 1.03. The frozen lattice becomes more stable than the liquid at a den-
sity p = 1.14.

PACS numbers: 64.70.Ew, 61.40.Df, 63.50.+x, 64.60.Cn

The fascinating stability of glasses has attracted a
great deal of theoretical attention recently. ' At the
same time, two rather different theories of melting of
periodic crystalline solids have been very successful.
The Kosterlitz- Thouless-Nelson-Halperin theory of
melting2 4 is based on a dislocation model of the liquid
and has been particularly successful in two dimensions.
The other approach, a mean-field theory based on the
density-functional ideas from liquid-state physics, has
been reinvigorated by Ramakrishnan and Yussouff s

and others. 6 8 This theory is also quantitatively suc-
cessful, especially in three dimensions, and has the ad-
vantage of making direct contact with the underlying
intermolecular forces. Nelson9 has beautifully shown
how the disclination picture can be used to shed light
on the three-dimensional glass problem. The theory
suggests that there is an underlying phase transition to
a Frank-Kasper —type phase with a complex unit cell. '
In this paper we shall show how the density-functional
theories can be used to describe a structurally stable
but aperiodic phase or to describe crystalline phases
with complex unit cells.

The picture of a glass as an aperiodic crystal is an old
one to which many have subscribed. Ruelle has ar-
gued that there is no general theoretical argument that
thermodynamically stable states must have periodic
density distributions. " Indeed, the existence of Pen-
rose's remarkable aperiodic tilings of the plane by two
differently shaped tiles shows that such states may
indeed be stable if the constituent particles are ap-
propriately (and rather strangely) shaped. t2 Still, the
question for the glass problem is whether such a pack-
ing for simple objects can be metastable. Starting with
Bernal' ' many workers have constructed large re-
gions of aperiodic structures that appear to be structur-
ally sound. Evidence for the linear stability of such a
packing to small few-particle displacements can be ob-
tained from a self-consistent —phonon theory. '

In density-functional theories one seeks a minimum
of the free energy which is considered to be a func-
tional of the spatially varying, ensemble averaged,
number density. The structure of the Euler-Lagrange

equations for the density functionals used in the melt-
ing theory is very reminiscent of the mean-field equa-
tions for magnets with long-range interactions. ' The
mean-field equations for the anisotropic next-nearest-
neighbor Ising (ANNI) model and similar models of
structural phase transitions have been much investi-
gated. '7 In one dimension these equations do have
chaotic, i.e. , aperiodic, solutions, but it has been
shown that nearly periodic solutions with large unit
cells are the truly metastable states. '8 The mathemat-
ics for more dimensions has not been fully developed,
so the situation is less clear. Aubry has argued that
there are such states and has commented upon the
connection with glasses. '

The viewpoint we shall take in this paper is simpler
(and a bit noncommittal on the mathematical issue).
We shall assume that the large aperiodic structures
that have been built can be continued to the thermo-
dynamic limit. Making this assumption, we can use
these structures as a skeleton upon which we can build
a trial function for an aperiodic density distribution.
With a single variational parameter, this trial function
can accommodate both the uniform fluid state and an
aperiodic state in which particles remain tethered to
their sites in the amorphous lattice. This trial function
can be used in variational expressions for the free en-
ergy, obtained from liquid-state theory, which contain
the liquid-state direct correlation function as input.
We show that at low density only the uniform state is
stable but that at high density a metastable state with
an aperiodic density distribution occurs. The transi-
tion to the aperiodic frozen state appears to be discon-
tinuous. Because of the sensitivity of the results to the
input liquid thermodynamic and structural data, we
cannot pin down the transition point exactly, but it is
near the values reported in computer simulation.
Landau-Ginzburg treatments20 2' have indicated that
the transition should be weak. This does not seem to
be confirmed by the present calculations but experi-
ence in the study of periodic-crystal freezing indicates
that the present approximations can exaggerate the sta-
bility of the frozen state. We feel that our calculations
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do, however, give support to the basic notion that there is an underlying transition, from a liquid-state theory
viewpoint.

The theory starts with the density functional used by Ramakrishnan and Yussouff. This functional consists of
the ideal gas free-energy functional pius the interaction part of the free energy calculated to second order as an ex-
pansion about the uniform state:

of the lattice sites, (X}, are adjustable parameters.
Tarazona has used this sort of trial function for (x;} on
a crystalline lattice, with, however, a different free-
energy functional in his study of ordinary freezing. s

Haymet's study of hard-sphere freezing uses a recip-
rocal-space description which is equivalent. 4 In these
papers, the (x;} lie on a periodic lattice.

At present, we take the lattice sites to be given by
the positions of particles in a random close packing ob-
tained by the cluster growth algorithm of Bennett. '4 In
principle, the lattice points might be relaxed from
these positions in order to optimize the free energy.
The nearest-neighbor distance, d„ is adjusted so that
the interior density of the cluster is equal to the uni-
form density of the system.

The ideal-gas part of the free energy is the most
demanding to calculate because it is nonlinear and
nonadditive. Given a complete realization of the (x,}
it would be a straightforward but tedious numerical ex-
ercise to evaluate it, but we have developed instead
two approximate formulas which give rather good
bounds on the quantity. When o. is large, the Gauss-
ians do not overlap and Fd becomes simply Fd((x)
= —,

' ln(n/n. ) ——', . This is a lower bound, since
p(x) )p;(x). The first corrections to this form can
be expressed as a pairwise sum over the Bennett lat-
tice, because the overlaps are weak. Similar1y when o.
is small the density is nearly uniform and the entropy
can be expressed as a pairwise sum over the lattice
which is an upper bound. Numerical calculations show
that these formulas mesh rather well.

In fact the free-energy minima occur at such large n
that the limiting large-n formula suffices. F;„,(Q. ) can
again best be calculated in terms of the pair distribu-
tion function of the reference lattice:

=N[C(0)+ Vt(n)+pJt V2(~, x)g' (x)d'x].

In this expression, Vi(o. ) is the self-interaction of a
single Gaussian:

F[p(x)] = Fd+F;„,= ' d3x p(x) [lnp(x) —1]——,
'

J [p(x) —po]c(xx';po) [p(x') —po]d x d x'+F„„;.
In this expression, p(x) is the nonuniform single-
particle density distribution, po its mean value, and en-
ergy is measured in units of thermal energy, k&T. The
interaction part involves the direct correlation function
of the fluid, c(x,x',po) = c(ix —x'i, po) evaluated at
the density po. F„„; is the excess free energy of the
uniform liquid. For freezing, 5 6 and other problems
such as the liquid interface, more sophisticated free-
energy functionals have been developed, but this sim-
ple form captures much of the essential physics. We
use several approximations for the direct correlation
function. The simplest is obtained from the exact
solution of the Percus-Yevick (PY) integral equation
for hard spheres.

We also use a more accurate c(r) which has been
obtained from a semiempirical approach due to Hen-
derson and Grundke. 23 High-density values for c(r)
have not been addressed adequately in the literature,
and those that have fall short, in terms of the densities
of the glass with which we are concerned. Faced
with this ignorance of c(r) expressions at high densi-
ty, we have assumed a linear form for the tail of c(r),
which reduces to that of Henderson and Grundke for
short-ranged correlations, and have adopted their c(r)
within the hard-sphere core.

Although theories of c(r) at moderately high densi-
ty (i.e. , p ~0.9) have positive tails for short-ranged
correlations, * Tarazona's successful analysis of the
melting transition uses a negative tail in c(r).7 Clear-
ly, there is uncertainty in c(r) at high density vis a vis

the density-functional theory. We feel that our ad hoc
tail, in light of this uncertainty, has the virtues of vari-
ability and simp1icity, enabling one to ascertain the
sensitivity of the transition to correlation effects not
incorporated in the PY theory. Consequently, we have
proceeded with caution in our interpretation of transi-
tion data, and emphasize that our purpose in this
Letter is simply to suggest a viable approach to the
glass transition problem.

For our trial function we use a sum of Gaussians
centered about the %lattice sites of a large amorphous
lattice:

N

p(x) = g p, (x;x, )
i=1

3i2 w

X exp[ —n(x —x, )2].

The mean square displacement, 0, ', and the positions

V&(a) =„'I po(x;0)po(x', 0) c(x,x')d'x d'x',

V2 is an averaged interaction between two distinct
Gaussians:

V2(n', xi) =
J pp(x;0) c(x,x') pi(x';xt) d x d x';
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and C(0) is the zero —wave-vector direct correlation
function.

For the PY c(r), the entropic term more than bal-
ances the interaction term, so that no minimum at fi-
nite o. results at the densities considered. However,
the sum of the ideal-gas terms with the interaction
term for the more accurate c(r) is plotted at several
densities in Fig. 1(a). There is always a local
minimum at n = 0. At a density of po= 1.03, the local-
ized minimum appears at a=287. This minimum is
due to competition of the entropic and interaction
term. For every density at which we obtain a free-
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FIG. 1. Total free energy per particle, relative to uniform
fluid. (a) Versus o. . The Bennett structure is assumed.
Solid curve, po- =1; dashed curve, po- =1.05; dot-dashed
curve, po. =1.1. (h) Versus per, with approximate Hen-
derson-Grundke c (r). Solid curve, curved-space structure;
dashed curve, Bennett structure.

energy minimum, we determine the minimum free-
energy values as a function of density. The total free
energy per particle, relative to the uniform fluid, for
the Henderson-Grundke c(r), is plotted versus densi-
ty in Fig. 1(b). The free energies cross at a density
pT = 1.14. Although this curve suggests a first-order
phase transition it proved to be impossible to carry out
a Maxwell construction because most approximate free
energies for the liquid gave negative pressures when
combined with our relative free-energy results. Tara-
zona has indicated in his study of the freezing into the
fcc crystal that the truncation of the free-energy ex-
pansion in p to second order exaggerates the stability
of the crystalline phase. This is likely the cause of the
negative pressures. In addition, calculations indicate
the sensitivity of solid stability to the tail of c(r). Be-
cause of the ad hoc nature of this tail, our negative
pressures are presumably rectifiable with the use of
more accurate c ( r) expressions in the future.
Parenthetically, the Maxwell construction (i.e. , double
tangent) which we used to locate the coexistence den-
sities for the liquid and solid is identically equivalent
to the equality of grand potentials used in the original
formulation of density-functional theory by Rama-
krishnan and Yussouff. 26

It is important for our theory that the set of fiducial
points (x;l be realizable in ordinary three-dimensional
space. Nevertheless it is amusing to compare the
results with those for the hypothetical icosahedral crys-
tal which exists in curved space. The pair distribution
is given by Sadoc as a sum of delta functions. 27 The
minimum density for the aperiodic state is p = 0.95 at
which the n value is 98.5. The density at which the
crystalline free energy crosses the liquid is p= 1.135.
This is also shown in Fig. 1(b). Thus the hypothetical
curved-space packing is somewhat more stable than
the Bennett packing. Clearly annealing effects and
other nonequilibrium phenomena will play a role in
determining the exact transition point, but the agree-
ment is heartening.

The present theory describes a kind of liquid-glass
thermodynamic transition, starting by an expansion
about the liquid state. As such it is most appropriate
near the transition. The crossing density p T is close to
the devitrification densities observed in simulation.
The calculations presented here give evidence that a
transition to an aperiodic crystal is reasonable from the
point of view of approximate liquid-structure theory.
The transition appears to be discontinuous but critical
fluctuation effects like those described by defect
theories will play a significant role in determining the
nature of the transition and coexistence parameters.
In addition, because a particular amorphous lattice is
assumed, the present theory does not rule out the pos-
sibility that some structure that is periodic but with a
large unit cell is a better description. For these reasons
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our results must be viewed as suggestive. We feel that
these initial results, showing the possibility of a ther-
modynamic transition, will encourage further work
along these lines. We should bear in mind, however,
that the analogous situation arose in the theory of the
spin-glass, where the original mean-field treatments
indicated thermodynamic phase transitions, while sub-
sequent theories, incorporating relaxation phenomena,
resulted in smoothed-out transitions. These non-
equilibrium phenomena may be responsible for a
number of interesting glassy behaviors, as Parisi sug-
gests. 2s Although the nature of the transition was
changed from the original results of mean-field theory,
these initial approaches proved illuminating. In addi-
tion because the mean-field theory makes contact with
the underlying forces, through the integral equation
theories of liquid structure, the present approach
should be valuable in understanding the molecular
basis of the glass transition. In view of the sophisticat-
ed state of liquid-structure calculations, one can hope
to extend these ideas to more complex systems, such
as soft-sphere glasses, binary-mixture glasses, and
glasses made up of polyatomic molecules.

This work was supported by the National Science
Foundation.

(~)Permanent address: Department of Physics, Banaras
Hindu University, Varanasi 221005, Uttar Predesh, India.

~See, for example, articles in Topological Disorder in Con-
densed Matter, edited by T. Ninonaya and F. Yonezawa
(Springer, Berlin, 1983).

2J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181
(1973).

3B. Halperin and D. Nelson, Phys. Rev. Lett. 41, 121
(1978).

4D. Nelson and B. Halperin, Phys. Rev. B 19, 2457
(1979).

ST. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19,
2775 (1979);M. Yussouff, Phys. Rev. B 23, 5871 (1983).

6A. D. J. Haymet and D. W. Oxtoby, J. Chem. Phys. 74,
2559 (1981), and 76, 6262 (1982).

7A. D. J. Haymet, J. Chem. Phys. 78, 4641 (1983).
sP. Tarazona, Mol. Phys. 52, 871 (1984).
9D. R. Nelson, Phys. Rev. Lett. 50, 982 (1983), and Phys.

Rev. B 28, 5515 (1983).
~OF. C. Frank and J. S. Kasper, Acta. Crystallogr. 11, 184

(1958), and 12, 483 (1959).
ttD. Ruelle, Physica (Utrecht) 113A, 619 (1982).
t2M. Gardner, Sci. Am. 236, 110 (1977).
~3J. D. Bernal, Proc. Roy. Soc. London, Ser. A 280, 299

(1964).
t4C. H. Bennett, J. Appl. Phys. 43, 2727 (1972).
~5J. P. Stoessel and P. G. Wolynes, J. Chem. Phys. 80,

4502 (1984), and unpublished calculations.
t6P. Bak, Rep. Prog. Phys. 45, 587 (1982).
~7M. Fisher and W. Selke, Phys. Rev. Lett. 44, 1502

(1980).
~8E. Fradkin, 0. Hernandez, B. A. Huberman, and R. Pan-

dit, Nucl. Phys. B215, 137 (1983).
t9S. Aubry, J. Phys. (Paris) 44, 147 (1983).
20S. Alexander and J. McTague, Phys. Rev. Lett. 41, 702

(1978).
2&M. Widom and D. R. Nelson, to be published.
22Y. Singh and F. F. Abraham, J. Chem. Phys. 67, 537

(1977).
23Douglas Henderson and E. %. Grundke, J. Chem. Phys.

63, 601 (1975).
24F. J. Rogers and D. A. Young, Phys. Rev. A 30, 999

(1984).
2sB. B. Deo and A. C. Naik, Phys. Rev. A 28, 1700 (1983).
26See, for example, Radu Balescu, in Equilibrium and Won-

equilibrium Statistical Mechanics (Wiley, New York, 1975).
27J. F. Sadoc, J. Non-Cryst. Solids 44, 1 (1981).
2aM. Mezard et ai. , J. Phys. (Paris) 45, 843 (1984).

1062


