
VOLUME 54, NUMBER 10 PHYSICAL REVIEW LETTERS

Nonlinear Stability of Drift-Tearing Modes

11 MARCH 1985

Bruce D. Scott, J. F. Drake, and A. B. Hassam
University ofMaryland, College Park, Maryland 20 742

(Received 3 December 1984)

The nonlinear stability of drift-tearing modes in the presence of an electron temperature inhomo-
geneity is investigated. It is shown that linearly growing drift-tearing modes are rendered stable at a
very small island width by quasilinear thermal effects. However, both linearly and quasilinearly sta-
bilized modes grow to large amplitude if the initial island width is larger than the linear tearing
layer, demonstrating the importance of nonlinear considerations in predictions of stability.
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Magnetic reconnection in current-carrying plasmas
is a process of fundamental importance both in fusion
and in astrophysical research. Consequently, the
linear and nonlinear behavior of tearing modes has
been studied in detail. In calculations based on the
equations of one-fluid magnetohydrodynamics, insta-
bility occurs when a parameter 5', determined by the
overall current profile and the mode wavelength, is
positive. ' Rutherford2 showed that nonlinear effects
become important when the magnetic island width w

exceeds the rather narrow linear tearing width A. The
growth of the islands then changes from exponential to
algebraic. In high-temperature plasmas the perpendic-
ular pressure gradient in the vicinity of the tearing
layer causes the mode to propagate at the diamagnetic
frequency to„3 and introduces a positive threshold 6,'
such that if 5'& b, ,' the mode is stabilized. 4 7 This
threshold is a consequence of either the density4 or the
temperature5 7 gradient. In the presence of a density
gradient alone, drift-tearing modes also grow algebrai-
cally when ~ )5,8 while the diamagnetic propaga-
tion ceases at small vv as the sound wave locally flat-
tens this gradient. '0

The effect of the temperature gradient on the non-
linear behavior of tearing modes is not well under-
stood. It has been shown that small magnetic islands
can locally enhance the cross-field thermal transport. "
In this paper we are concerned with the self-consistent
effects of the resulting changes in the temperature
profile on the evolution of the islands. We specifically
present two results based on both analytic and numeri-
cal computations. First, linearly unstable drift-tearing
modes growing from small amplitude stabilize non-
linearly at w & 5 and then damp away. Quasilinear
modification of the pressure profile as the island grows
causes co. to become spatially dependent, which forces
the field lines to tend to propagate at differing veloci-
ties in different parts of the tearing layer. This effect
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Standard notation is used here, with d/dt = 8/8 t
+ (c/B)7zx'7@ '7, Dll = T/qll ne', Jll = —(c/4m)
x ~ 2|1t, & II

= b '7, a = 1.71, and K = 1.07. The equa-
tions respectively represent parallel electron force bal-
ance with pressure and thermal forces, vorticity gen-
eration, continuity (allowing for parallel electron
compression), and heat transport with parallel thermal
conduction. We neglect parallel ion motion since the
electron dynamics becomes nonlinear before the
sound wave is important.

The quasilinear stabilization of linearly growing
drift-tearing modes can be calculated analytically in the
semicollisional limit. '3 Assuming a priori that y & to

and that the stabilizing influence of @ is not impor-
tant, 5 7 we linearize Eqs. (1)—(4) to obtain an equation
for the perturbed flux"3'4:

is shown below to be strongly stabilizing. Second, we
demonstrate that both linearly and quasilinearly stable
tearing modes, for which 6' ) 0, are nonlinearly de-
stabilized if they are initialized with w )A. In this
case parallel thermal conduction enables the tempera-
ture to equilibrate rapidly around the magnetic island,
flattening the temperature gradient. All thermal sta-
bilizing effects associated with co, T then vanish, and
the island grows algebraically.

We quantify these arguments by calculating the non-
linear evolution of the tearing mode using the Bragin-
skii'2 two-fluid equations in a low-P sheet pinch. With
the electromagnetic fields given by B=8'7z+'7Q
x'7z and E= —c '(8$/Bt)7z —7@, where z is the
symmetry direction, the governing equations are'o
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where qll 'a. (p) is the generalized conductivity, which has been derived previously, ' a= , n, q=q—llc /4m. ,
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p= x/b, D, b D= co/kI) D)), and k)) = kI)x—= kx/L, is the parallel wave number. In a high-temperature plasma the
diamagnetic terms, co,„=—(ckT/neB) (n) ' and m, T= —(ck/eB) ( T) ', on the right-hand side of Eq. (5) are indi-
vidually large compared with the flux diffusion term on the left side so that small changes in these terms, which
result as the growing magnetic island alters t e density and temperature pro iles, can seriously a ect the evolution
of the mode. The timed endence of ra. „andre. r can he calculated from the equations for (a) and i T),

n ' B ( n ) /B t = ( 1/ ne ) ( 7 )) J, ) ),
'B( T)/Bt = —,

' (n/ne) (V)) J)) ) +KD)) T '('t7)) (7)) T) ), (6)

in which the angle brackets represent an average over y, the tilde denotes a fluctuating quantity with the depen-
dence exp[iky —i f co(t')dt'], and it is understood that the 0)„ terms take their line'ar values at t=0. We first
evaluate the evolution of the temperature. With '7i) =1(kp/B) (B/Bx), J)) =i~o(p)Q-/7l)) c, and linearization of
Eq. (4) to obtain T, Eq. (6) becomes

(T) =2 Re ([—,'ncoo-(p) —Kq, ](1+ihip )T t LAD B p

where co = ru/co„o), = ckT/eBL„, Yl, = L„/LT, and L„and LT are the scale lengths of density and temperature at
t=0. The spatial gradients of (n) and (T) in Eq. (7) have been replaced by their initial values. The time depen-
dence of 0) T(p) is then given by
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where w= (8igfL, /B)'t is the island width. Note that in the expression for cu„T(p, t) in Eq. (8) the dependences
on space and time are separable, a result which will enable us to solve analytically for the complete quasilinear
behavior of the mode. After calculating a similar expression for co,„(p,t) and integrating Eq. (5) across the tearing
layer (p —1), we find

irlb, '//)tD = o&,e ' [It(0) —1) —I2nq, + I3q,h. ],

where 5'= (PAD) ' f dp P~~ is the usual tearing-mode stability parameter, ' It = 2.77 and I2= 1.36 are obtained
from linear theory, and
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where A =0.0186', (1+0.84', ). The quasilinear
description is completed with the, equation for island
growth,

B w/Bt = yw/2.

The linear mode frequency has. been used in evalua-
tion of I3.7'4 The growth rate is then given by

y = yL —0.538',~.h. ,

where yL = 7lb, '/&2I&b, D is the linear growth rate.
Since 5, & 0, the quasilinear modification of the pres-
sure profile is clearly stabilizing. Differentiating
with respect to time, we find

y = yl t'anh[yL(t, —t) ],

w/5 = (y /o) 2 't') 't' sech't' [y ( t, —t ) ], (12)

with t, =yL ln(2yLb, D/co, woA ) and wo the initial
island width. Note that the maximum island size oc-
curs at t = t, and is approximately

w,„=(yL/cu„)'t2bD ( b, D, (13)

where the inequality is valid because a drift-tearing
mode has by definition yL ( cu, . As t ~, the
damping rate becomes y = —yL so that ~ 0.

The solution of Eqs. (9) and (10) is readily calculable
and is given by
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In this way small-amplitude linearly growing drift-
tearing modes quasilinearly stabilize at small island
widths. The quasilinear approach is justified since
w & AD for all t. For w —b, D nonlinear and linear
terms become comparable and the quasilinear theory
breaks down. 's Finally, we must emphasize that both
the temperature gradient and thermal conduction are
required for quasilinear stabilization. This is evident
from Eq. (9) as A~q, F.or 7), =0, there is a large
cancellation between c0 and c0,„ in Eq. (5), so that
tr(p) —1 —r0 „/r0 —y/co „. As a consequence, the
quasilinear modifications of (n) and (T) are greatly
reduced [see Eq. (7)]. Similarly, if n, AO but K=0,
the temperature behaves like the density, and the
quasilinear effects are small.

In support of our analysis we have undertaken a nu-
merical solution of Eqs. (1)—(4). We use a finite-
difference approximation in the x direction, expand y
dependences into harmonics, and restrict the calcula-
tion to a region small compared to I„ in a way
described previously. to This nonlinear, initial-value
prescription has been checked in the linear regime for
a range of plasma parameters by the ensuring of agree-
ment of the mode frequency and growth rate with the
results of a shooting code7 which solves the lineariza-
tions of Eqs. (1)—(4). The results of a representative
case of quasilinear stabilization are presented in Fig. 1.
The initially very small island width is seen to rise and
fall with time as the growth rate drops through zero
(solid lines). The curves described by Eqs. (11) and
(12) are shown for comparison (dashed lines), differ-
ences being due to the asymptotic nature of the quasi-
linear theory. The inclusion of higher harmonics has

been found to produce only slight differences in the
maximum island width and its timing; the qualitative
behavior remains unchanged.

The nonlinear behavior of drift-tearing modes
changes dramatically, however, when the initial island
width is as large as b, D. We evolve Eqs. (1)—(4) with
initial conditions in which J= J(Q) and T= T(Q).
The results are best understood in the context of the
parameter space introduced in Ref. 7, in which the
parameters P =PL, —/L„and C = 0.51(v, /co, ) (m/
M)L,2/L„2 were shown to determine the properties of
the linear mode. For a given C & 1 (the semicol-
lisional regime), linear tearing modes are nearly purely
growing if P/b, 'p~ & C't, are drift dominated and un-
stable if C' 2 & P/5'p, & 1, and are stabilized by the
influence of @ if P/b, 'p, ) 1. We have numerically
calculated the nonlinear evolution of the islands with
initial widths ranging from a fraction of to several
times b, D for values of P above and below the linear
stability boundary. The nonlinear stability of the sys-
tem for a given I8 and wo is indicated in Fig. 2. For in-
itial conditions labeled by the filled (open) circles the
islands grow to large amplitude (damp away). Note
that an increase in P reflects an increase of c0, . The
dashed curve shown separates the nonlinear stable and
unstable regions. The point on the vertical axis
touched by this curve is the minimum value of P/5'p,
for which the linear mode is stabilized by quasilinear
effects, and the point marked L is the linear stability
boundary. It is clear that an initial island width of just
a few b, D is sufficient to destabilize both linearly and
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FIG. 1. Quasilinear evolution of the growth rate (y) and
magnetic island width (w), from numerical (solid curves)
and analytical (dashed curves) calculations. The numerical
linear growth rate was used for yL in Eqs. (11) and (12).

w/6 D

FIG. 2. Parameter plot indicating nonlinear stability of
the system to drift-tearing modes. Filled circles represent
cases in which the mode grows to large amplitude; open cir-
cles signify modes which damp away. The point L denotes
the linear stability boundary, while the transition into the
drift regime is below the frame at P/5'p, = 0.33.
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quasilinearly stabilized modes. These results are not
inconsistent with previous reports that large islands are
not affected by thermal forces. '6 The physically dif-
ferent case of P ) 1, in which linear tearing modes are
stabilized by diamagnetic shielding, is presently under
investigation.

The significance of our results is that the con-
clusions of linear drift-tearing mode stability theory
are diminished in relevance as far as operations on
tokamaks are concerned. This is because the initial
perturbation required for continued growth is so small:
b, D is of order 1 mm on the Princeton Large Torus and
scales as T . Perturbations due to magnetic field
errors, ripple, or residual islands are likely to be larger
than this. Moreover, the smallest m =2 oscillations
presently measurable in tokamaks in fact are already in
the nonlinearly unstable regime. The question of sta-
bility is still open for the collisionless regime, as it is
for the case that P ) 1. Nevertheless, a confident sta-
bility prediction in either of these cases awaits a com-
plete nonlinear treatment. Our results demonstrate
the importance of nonlinear calculations in general in
assessing the overall stability of a current-carrying
plasma.
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