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Possibility of Direct Observation of Quantum Jumps
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In a single-atom double-resonance experiment involving a strong and a weak transition, quantum
jumps on the weak transition cause the fluorescence of the strong transition to turn on and off
abruptly. The fluorescence is off when the weak transition is excited and on when it is not. Thus
quantum jumps on the weak transition can be directly monitored by observation of the random
telegraph signal radiated by the strong transition. %e present here a simple theory of this effect for
the case of incoherent excitation.

PACS numbers: 42.50.+q, 32.90.+a

For various reasons, spectroscopists have usually
worked with samples containing a large number of
atoms. Only very recently has it become possible to
confine a single atomic ion in a radio-frequency trap
and to subject the ion to spectroscopic study. This is
important because a number of effects that can be ob-
served in the fluorescence of a single atom (or ion) are
totally masked when many atoms contribute to the
fluorescence. The effect considered here is of this
type.

The idea we shall develop was first suggested by
Dehmelt as a way to detect a weak transition in
single-atom spectroscopy. 3 Although single-atom
fi;: '::;cence from a strong optical transition ( —10
photons/sec) is readily detected either visually (using
a microscope) or photoelectrically, the direct detection
of a fluorescent or absorptive line profile of a very
weak transition (say 1 photon/sec) is problematic. To
circumvent this difficulty, Dehmelt proposed the
double-resonance scheme illustrated in Fig. 1, in
which the weak transition of interest, 0 2, and a
strong transition, 0 1, have a common lower level.
Suppose the atomic electron starts in state 0. With the
strong transition saturated and no excitation of the

weak transition, the electron undergoes transitions
rapidly between states 0 and 1, and the rate of fluores-
cence (photons/sec) on this transition is R, =AtPt
= A t/2, since the probability to be in state 1 is —, (here
A t is the Einstein spontaneous emission coefficient for
the strong transition). Under these conditions, a
detector at distance r from the atom registers a mean
fluorescent intensity (irradiance) Io which is propor-
tional to the rate At/2 of photon emission and inverse-
ly proportional to r . Of course, the true fluorescent
signal consists of a sequence of pulses as photons ar-
rive at the detector. But, for the very high photon
emission rate of the strong transition, we may ignore
the discreteness and treat the intensity Io as constant
in time. Now let radiation be applied to the weak tran-
sition and let the saturating field continue to act on the
strong one. Then the detector will continue to register
the intensity Io until the electron makes a transition to
level 2. This turns off the strong fluorescence because
the electron is no longer available for transitions
between levels 0 and 1. The strong fluorescence turns
on again when the electron returns to level 0 either by
spontaneous or stimulated emission. Since the weak
transitions occur randomly in time, the atomic fluores-
ence I(t) has the form of a random telegraph signal,
as illustrated in Fig. 2. The important point is that the
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FIG. 1. Energy-level scheme for single-atom double-
resonance experiment.

FIG. 2. Single-atom fluorescent intensity vs time. Inter-
ruptions of fluorescence are due to excitation of the weak
transition 0 2.
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fluorescence emanating from the strong transition is a
direct indicator of the state of excitation of the weak
transition; the fluorescence is off when level 2 is occu-
pied and on when it is not. So by observation of the
atomic fluorescence I(t), say with the eye and a mi-
croscope, one can directly monitor the quantum jumps
on the weak transition. At the time of writing, this ef-
fect has not been observed, but probably will be in the
near future.

The purpose of this Letter is to present a first
theoretical treatment of the above single-atom
double-resonance effect. For simplicity we limit the
analysis to the case of incoherent excitation. To begin,
we look at the rate equations for the probabilities Po,
Pt, and P2 that the levels in Fig. 1 are occupied. Let
A t, Bt and A2, B2 be the Einstein coefficients for the
strong and weak transitions, respectively (At ))A2).
Then, if Ut and U2 are the spectral energy densities of
radiation acting on the two transitions, the Einstein
rate equations for Pt and P2 read

Pt = AtPt+ Bt Ut(Pp —Pt),

P2 A2P2+ B2 U2(Po

A rate equation for Po would be superfluous, since

Pp+ Pt+ P2=0.

(lb)

(2)

The mean rates of fluorescence (photonslsec) on the
two transitions are R t = A tPt and R2 = A2P, .

%e assume that the strong transition is strongly sat-
urated ( Ut ~). In this case Pt = Pp, and it is con-
venient to work with the variables

M++9' =1,
we obtain

P~ = —R &~+R+&
=R H~ —R+P

(4)

(5a)

(5b)

where R+ = —,'B2U2 and R =A2+B2U2. We may
think of the system as an effective two-level system
with upward transition rate R+ and downward rate
R . In steady state (H+ =P =0), the solution of
Eqs. (4) and (5) is

H+ =P2, H =Pp+Pt,
which are the probabilities that the weak transition is
excited or not excited, respectively. From (1) and (2),
which now reads

say nothing about the fluctuations of this signal. A
more complete description of the stochastic process is
provided by the following probabilities. 4 Let
P„+(t, T) denote the probability that n transitions oc-
cur between levels + and — in the time interval
[t,t+ T] and that the atom is left in level + at time
t+ T. Similarly, let P„(t,T) be the probability that n

transitions occur on [t,t+ T] with the atom in level-
at time t+ T. Then P„(t,T) =P„+(t,T) +P„(t,T)
is clearly the probability that n transitions occur on
[t,t+ T], regardless of the final state; and

~+(r+ T) = gP„+(t, T),
n =0

(7a)

(r + T) = QP„(r, T),
n=0

(7b)

dP„+/dT= R+P„ t
—R P„+,

dP„ /dT=R P„ t i —R+P„ (8b)

It is also clear from the figure that, for these equations
to be valid for n = 0, we must set P t + = 0, since no
probabilities feed Po +, i.e. , the first term on the right
is absent in each of Eqs. (8) for n =0. As a check on
Eqs. (8) one may sum each of them over all n and use
(7). The result is the Einstein rate equations (5).

To solve Eqs. (8) we need initial conditions at T = 0.
These are easily found as follows. In the first place,

0, + P]+ n+1, +

are the probabilities for final states + and —,regard-
less of the number of transitions that have occurred.
If the stochastic process I(t) is stationary, then
P„+( T) are functions of Tonly and H+ are constant.

In Fig. 3 the probabilities P„+ are represented by
solid dots. Since a transition to level + ( —) always
originates in level —(+ ), and since transitions occur
one at a time (n n+ I), the flow of probability
between the dots as T increases is that indicated by the
arrows in the figure. Finally, because the rates of up-
ward and downward transitions are R+ and R
respectively, regardless of the number of transitions
that have occurred, we must associate the rate R+
with each of the up arrows and the rate R with each
of the down arrows. It follows then from Fig. 3 that
the rate equations for the probabilities P„+ are

R+
(R +R )'

R
(R +R )

The rate equations for P+ and P do not describe
the stochastic process of Fig. 2. In fact, for steady
state, the probabilities (6) determine only the mean
value of the random telegraph signal (I= Io& ) and

P
'7

Pi— P P Pn-1 n
Pn+1—

FIG. 3. Solid dots represent probabilities P„+(T) that n

transitions occur in time T and that atom is left in state
Arrows indicate the flow of probability as Tincreases.
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since no transitions can occur in a time interval of zero
length, we must have P„+(t, 0) =0 for n ) 0. Then
from Eqs. (7) we find that Po + (t, 0) = W+ (t), which
completes the specification of initial conditions.

The rate equations (8) enable us to make a number
of predictions which may be tested by observing the
atomic fluorescence 1(t) Co. nsider the distribution of
the lengths of time intervals during which the fluores-
cence is off. Suppose I(t) turns off at time t. Then
we know that the atomic electron has just entered the
upper level [H+ (t) = 1 and 9' (t) = 0], and we have
the initial condition Po + (t, 0) = W+ (t) = 1. The solu-
tion of Eq. (Sa) for n = 0 [if we remember thatP, (r, T) =0] is

Po + (t, T) = exp( —R T).

This is the probability that no transitions have oc-
curred in time T, i.e. , the probability that the fluores-
cence 1(r) is still off after time T. Accordingly,
F(T) =1—exp( —R T) is the probability that the
fluorescent intensity has turned on in time T, and the
derivative of this distribution, W,rr= dF/dT, is the
probability density for the durations Tof interruptions
in the fluorescent signal ("off times"):

dPO~ 0~/dT = R Po~ ()rr R + Po~ 0~~

dPog prr/dT = R ~ Pop on R Pop Off.

(16a)

Equations (16) are derived by our summing Eq. (Sa)
over even n, summing Eq. (Sb) over odd n, and using
(14) and (15). The initial conditions for these equa-
tions follows from (14), (15), and the previously
derived values of P„+(0). In steady state these are
P,„,„(0)=H =R /(Ri+R ) and Pogoff(0) =0.
The solution of Eqs. (16) with these initial conditions
is, in part,

bility for the signal to be on at t and r+ Tis

P.„.„(T)= X P„(T), (14)
n even

since P„(T) is the probability for signal on (atom in
level —) at time t+ Twith n transitions between t and
t+ T. A similar argument shows that

P.„.„(T)= g P„,(T) (»)
n odd

is the total probability that the signal is on at time t and
off at t+ T. We must consider this probability also be-
cause P „,„and P,„,rr are coupled through the equa-
tions

Woff( T) = R exp( —R T).

An exactly analogous argument shows that the proba-
bility density for "on times" is

W,„(T) = R+exp( —R+ T).

RP.„.„(T)= (R, +R )'
R+R- -(~,~ ) T

(R, +R )' (17)

C ( T) = 102P,„,„(T) . (13)

For a particular realization of the fluorescent signal
that is on at time t+ T, the signal will also be on at
time t provided that there is an even number of transi-
tions between these two times. Thus the total proba-

Thus both the off times and the on times are distribut-
ed exponentially, but with different time constants,
namely, R and R+, respectively. Clearly both R+
and R can be obtained from a statistical analysis of
the random singal 1(t), and hence the 2 coefficient of
the weak transition (A2= R —2R+) can also be ob-
tained.

Next consider the two-time intensity correlation
function

C(T) = (1(r)1(r+ T)),
which we write as a function of T on the assumption
that I(t) is stationary. A glance at Fig. 2 reveals that
the intensity product I(t)I(t+ T) can assume only
two values; it is 102 when the fluorescence is on at time
t and at time t+ T, and it is zero otherwise. Therefore
the mean value of the intensity product, namely,
C(T) is 10 times the probability P,„,„(T) that I(t) is
on both at time tand t+ T.

and use of this in (13) gives

C(T) =mP+~2e (18)

where mI= (I) =IOR /(R++R ) is the mean in-
tensity and a-12= (12) —(I)2= IDR+R /(R+ + R )
is the variance of intensity. Thus the two-time intensi-
ty correlation function falls exponentially from the
mean square value (12) to the squared mean value
(I) as T goes from zero to infinity. The frequency
spectrum of intensity fluctuations,

S(o)) =„C(T)coscuTdT
~,'(R++R )= ~ml's(~)+, , (19)

QJ + R++R
is also of interest. Except for a zero-frequency com-
ponent, it is Lorentzian with half-width b, co
=R +R

In summary, we emphasized that, in a single-atom
double-resonance experiment with a strong and a weak
transition, the atomic fluorescence flashes on and off
as the atom undergoes weak transitions. This effect is
noteworthy because it offers a means by which quan-
tum jumps in an atomic system can be directly moni-
tored and by which the Einstein 2 coefficient of a very
weak transition can be measured. More specifically,
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we derived equations which govern the statistics of the
fluorescent random telegraph signal, and used these
equations to calculate the distributions of on times and
off times and the two-time intensity correlation func-
tion. These results apply when the atomic excitation is
incoherent, i.e. , when the spectral energy density of
the exciting radiation is a slowly varying function of
frequency across each atomic line. This restriction
greatly simplifies the analysis. In the case of coherent
monochromatic excitation, one must consider a variety
of effects, such as the Autler-Townes splitting and
broadening of the weak transition, which complicate
the calculations considerably. We plan to present else-
where a detailed theory for the case of coherent excita-
tion.
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