
VOLUME 54, NUMBER 10 PHYSICAL REVIEW LETTERS 11 MARCH 1985

Production of Squeezed States in the Interaction between
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We show that squeezed states can be generated by the interaction of coherent electromagnetic ra-
diation with a plasma. Inside the plasma the electromagnetic field is represented by quasiphotons.
The conditions for obtaining squeezed states in this system are related to dispersion relations of the
quasiphotons in the plasma.
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There is today much interest in generating squeezed
states of the electromagnetic (e.m. ) field. ' ' These
states are characterized by the fact that the variance of
one of the two quadrature components of the e.m.
field is smaller than the minimal product of the two
uncertainties. The squeezed states are interesting also
because they exhibit nonclassical features. In spite of
the recent theoretical progress made in this field, so
far, these states have not been observed.

In the present work we show that the e.m. field in
the plasma may be represented by quasiphotons. [The
adjective "quasi" indicates that the dispersion relation
cu(k) is different from that of the free photon co = ck. ]
We discuss the conditions for obtaining squeezed
states by the interaction of the radiation with the plas-
ma.

The elementary dispersion relations of electromag-
netic waves in plasma are derived usually by using the
classical Maxwell equations, in which one takes into
account currents due to first-order charged-particle
motions. " The quantum mechanical treatment of the
coupling between the electrons and the e.m. field gives
the same dispersion relations. ' Usually, one is in-
terested in the dispersion relations of e.m. waves in
plasma, disregarding the possible influence of the in-
teraction with the plasma on the photon statistics of
the radiation field. The properties of squeezed states
cannot be calculated by classical methods, as these
states do not possess nonsingular representation in
terms of the Glauber-Sudarshan I' distribution. ' The
quantum approach developed in the present article is
therefore indispensible for the analysis of squeezed
states generated by the interaction of an e.m. wave and
a plasma, although it gives the same dispersion rela-
tions as those derived by classical methods.

Usually there is "a competition between the squeez-
ing produced by the nonlinear interaction and the
degradation of the squeezing by the damping. " In
most systems' ' vacuum fluctuations due to spon-
taneous emission and damping mechanism "will tend
to equalize the variance in the two quadratures and
hence destroy the squeezing. " We believe that in the
present system these effects are minimal. This belief
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C, = coshr, S, = sinhr. (4)

Let us consider a physical system with the general
quadratic Hamiltonian

H =h (cuba "a +f)'a +f)a +f2'a +f2a ), (5)
where the c-numbers co, f&, and f2 may be time
dependent. Using the Bogoliubov transformation'
represented by (3) with the values of C, and S, fixed
by

C,s,e"=f2(~0 to0= ~' —4lf2I',

C. = [(~+~0)~2too] I
~
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we get

H =t(up[b b + P'b + Pb —S, ],
where

(6)

~pp =fi Cr —A e"S'
The ground state of the Hamiltonian (7) is equivalent

(8)

is based on the fact that in our derivations the appear-
ance of squeezing is intimately tied with the derivation
of the well-known dispersion relation of e.m. waves in
plasma. As this relation is well established" we expect
the same validity to hold also for squeezing.

A coherent state ln) is generated by the action of
the displacement operator D, (n) on the vacuum:
lu. ) =D. (n) IO. ) where D, (n) = exp[na —n'a ].
The index a refers here to a certain single mode of the
radiation with wave vector k and frequency ~ = kc. A
squeezed state S, (a, z ) may be generated by first act-
ing with the unitary squeeze operator S, (z) on the
vacuum followed by the displacement operator2 8

IS.(~,z)) =D. (~)S.(z) 10.), (1)
where

S, (z) = exp[ —,'za' ——,'z'a ']
and z = re '~. The squeezed states are the eigenstates
of the operator b:
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to the squeezed state. b is interpreted as the "quasi-
photon" creation operator.

We would like now to show that the system of an
electron gas interacting with a monochromatic
coherent radiation field is a good candidate for produc-
ing squeezed states. We assume a plasma in which the
direct interactions between electrons may be ignored

(the Debye screening length is small relative to the
average distance between the electrons). We assume
low velocities for the electrons and neglect the effects
of electron-ion and electron-atom collisions. We call
the electrons of such a plasma "free" electrons.

The Hamiltonian of N "free" electrons (with coor-
dinates r; and momenta p; ) interacting with a coherent
e.m. field may be written as

H = X[p A(r )]2+Ho~
2m; i c

e 2
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Here pk= g;=texp[ —ik r;], ak, a k are the annihilation and creation operators for the mode k, and fk represents
the strength of the classical driving field, at this mode. Here we used a short notation where the summation over k
includes for each wave vector k two linear polarizations ek~ (X = 1, 2). The radiation field in the Hamiltonian (9)
represents driven oscillators for all modes for which fk~0.

Assuming that the location of the electrons is random and that the dimensions of the system are large relative to
one wavelength, we can neglect the terms which are linear in p, and use in the quadratic terms g~ &A (r;) the fol-
lowing relation:

Pk = ~k, o&.

Neglecting all terms which do not include the e.m. field operators ak„ak, we get for the Hamiltonian of the radia-

tion field

0)
H~ = X&kak, kak. k+~

4 «k, ka-k, ~ + ak, ~a-k, k) +~X[ft.k, ~ak, ~+ftk, kak, k ].P

kA. kA, & kA,
(12)

Here'4

~k + (27re N/rn ~k V) ~k ( 1 + ~p/2~k )

where cup = (47re N/mV)' is the plasma frequency of the electron gas"' and f'i k ~= Qkfk ~+ (cop/ 2co„)f' k „.
According to Eq. (12) the mode k, A. is coupled only to the mode —k, A. so that the Hamiltonian of radiation can be
separated into the summation of Hamiltonians for pairs of modes. For a certain pair of modes k, ) and —k, X we
introduce new boson operators

a+ = (ak) +a k g)/U&; a = I (ak, —a k g)/&2.

The Hamiltonian of radiation for the pair of modes k, X and —k, X is given by

2
A Q)p

Hp k „=O'0 [a+a++a a ]+ [a+a+ +a a +a+a++a a ]
40)

+h[a+f+ +a+f++a f' +a f ], (14)
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f+ =(ft, «, ~+f;-«, ~)l~& f- =t(f;«, ~ f,—-«, ~)t'~&.

Equation (14) represents two uncoupled modes of standing waves with separated Hamiltonians given by

2

H+ It Qa——+a++If — [a+a+ +a+a+]+If [a+f+ +a+f+],
403

(15)

and a similar equation for H . Let us consider a
driven oscillator of the radiation field at one standing
mode as represented by H+. We ignore all other
modes of the radiation field by assuming' f« ~

——f
(so that f = 0) and f„,= 0 for k'a + k. Since the
Hamiltonian H+ [Eq. (16)] with the boson operators
a +,a + is of the same form as Eq. (5) with the boson
operators a,a, we transform to operators b+, b+ ac-
cording to Eqs. (3) and (4) and obtain [see Eqs. (6)
and (7)]

0+ =hv(b+b+ +b+P+ +b+ P+ —5„). (17)

In our case

2 2

v = A —4if2i =co 1+ 2'
4

Cdp

4QJ
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Since to =kc, we can identify v= (co~ +k c )'I with
the well-known dispersion relation for e.m. waves in
plasma.

The eigenstates of the Hamiltonian @Ra+a+ are
exactly the eigenstates of the Hamiltonian tea+a+.
Therefore the change of frequency from ~ to 0 does
not cause any changes in the statistics of the radiation
field. However, the final result, i.e. , the change of the
dispersion relation of v= (co~+k c )tt2, is well es-
tablished experimentally and therefore proves by our
analysis the reality of the quasiphotons. We also con-
clude that similar changes in the dispersion relation
should happen in other devices for producing squeezed
states by an effective quadratic Hamiltonian. The
change in the dispersion relation inside the interaction
region would be an indication of the formation of
quasiphotons and squeezed states.

Let us study the properties of our squeezed states by
examining the explicit expression for P+ and b+. b+
is defined by (3) where in our case

tanh(2r) = to~~/(v'+ k2c'), e = 0.

I is the frequency of the e.m. radiation while k is the
wave number in the plasma. The maximal value of
tanh(2r) is 1 when kc &( to~, so that by changing the
density of electrons in the plasma we cover a11 possible
Bogoliubov transformations for real values of z. The
ground state of the Hamiltonian (17) is the squeezed
state which, because z is real, is a minimum-
uncertainty state both in operators a +,a + and b +,b +.

The value of P+ is given by [see Eq. (8)]

vP+ =f+C. f+~.,—

f+ = ~2[&«f«, ~+ (~,'I'»«)f«, ~ ]. (19)
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sary condition for squeezing. An alternative approach to the
present treatment would be to diagonalize the first two parts
of Eq. (16) directly by the Bogoliubov transformation:
bk= C,ak+a ke' 5, .

'6The ground state of Hog [Eq. (14)] for a certain mode k
describes a coherent state of a k, which may be produced by a
one-mode laser. The ground state of 0+ [Eq. (20)]
describes a coherent state of b+ (with the same k) which
may be produced by adding the plasma to the one-mode
laser, and is a squeezed state in terms of a+.

We can use Eqs. (7) and (8) for the standing mode of
radiation when we replace a, b, and p, respectively, by
a, , b, , and P+. t6

Finally, we would like to point out that we have ob-
tained the squeezed states for a standing mode of radi-
ation, where in our case the quadratic terms of the
Hamiltonian do not change the momentum of the sys-
tem. The same situation can occur in a two-photon
laser where two photons of the same frequency with
wave vectors k and —k can be absorbed in a transition
which is of second order in p A.
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