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High-resolution spectroscopy of 7r+ from E absorption at rest has been used for the first time
to identify X hypernuclear states. The observed spectrum from a (CH)„ target has revealed a

p3/2-p1/2 doublet of ' Be with narrow widths. The spin-orbit splitting of X is deduced to be 5

MeV, 0.8 times that for nucleons.

PACS numbers: 21.80.+a, 13.75.Ev, 25.80.Nv

In this Letter we report on the first experimental at-
tempt to form X hypernuclei from K absorption at
rest. The basic principle, motivation, and aims under-
lying this experiment are described in a separate pa-
per. ' The stopped K method is characterized by (i)
efficient production of hyperons after nearly 100'/0 ab-
sorption of K by nucleons in the surface region, (ii)
large formation probability of X hypernuclei, and (iii)
population of nonsubstitutional states, such as ground
and low-lying states and both members of a spin-orbit
doublet, while in the recoilless method only the substi-
tutional states are enhanced. A theoretical treatment
of the formation probabilities for A hypernuclei was
given by Hufner, Lee, and Weidenmuller. An exten-
sive calculation of the formation probabilities of vari-
ous hypernuclear states was completed recently by Ya-
zaki and Matsuyama, and some of the characteristic
features have been discussed in Ref. 1.

The experiment was performed with the existing
heavy-neutrino-search experimental setup. Since a
plastic scintillator was used as an active target, the tar-
get nuclei available were only ' C and protons. A
similar experiment was done at CERN by Faessler
et al. They used a magnetic spectrometer with a
momentum range of 200—280 MeV/c for m, and suc-
ceeded in observing both (p3/2) „'(p3/2) A and
(p3/2)„'(st/2)A states. Since we measured 7r+ and

in a wider momentum range of 120—280 MeV/c,
we have obtained information on X hypernuclei. We

are thus in a position to study a most important
current problem, namely, how large is the spin-orbit
interaction of X in contrast to the small spin-orbit
splitting of A, 6 and why do the X hypernuclear states
exist with narrow widths?

The experimental setup and procedure were nearly
the same as those used for the L„2 experiment. The
550-MeV/c K 's from the KEK K3 beam line were
stopped in multilayered plastic scintillators. The L
stopping rate was about 5000 per spill (1 spill period
=2.4 sec). The K stopping layer was identified from
the energies deposited in these scintillator layers. The
charged particles were momentum analyzed by a mag-
netic spectrometer, which possessed a broad-range fo-
cal plane (100—260 MeV/c) and a large solid angle
( = 100 msr). The target was almost completely
covered by 200 pieces of 6.5X 6.5&&30 cm3 NaI(T1)
crystals. For the present purpose these counters
served as a m spectrometer.

The measured momentum spectra of m+ after the
correction for the momentum dependence of the spec-
trometer acceptance are shown in Fig. 1. These data
were taken for 80 h, corresponding to E stopping
events of 1.1 & 10 . This is substantially shorter than
the typical beam time for an in-flight reaction experi-
ment. The branching ratios of sr+ were estimated by
comparison of these spectra with the 205-MeV/c m+

peak in the decay of E+. The pion momentum is
uniquely related to the hypernuclear mass Mhy MQ,
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FIG. 1. Observed m+ spectra from K stopped in a plas-
tic scintillator (CH)„after acceptance correction for each
momentum. Typical statistical errors are indicated. (a) All
7r+. (b) rr+ tagged by 7r -like events. The dashed curves
show quasifree background together with in-flight decay of
y+

which is scaled in the upper part of the figure.
In the 7r+ spectrum of Fig. 1(a) we first notice the

largest peak at p = 185 MeV/c (1.2% per stopped
K ). This is the monochromatic peak from the decay
of stopped X+ to n +7r+. This peak can be mostly as-
cribed to a X+ which escaped the carbon nucleus.
This is consistent with the known escape probability of
40%. This peak can be used for the calibration of the
instrumental resolution. The full width at half max-
imum momentum resolution as seen from this peak is
1.6 MeV/c, which corresponds to a full width at half
maximum resolution AE =1.3 MeV in the hypernu-

clear energy level. The next distinct peak is seen at
p =173 MeVlc (0.6% per stopped K ). This is due
to the elementary process K p X 7r+ on hydrogen
atoms.

Now we consider the broader peak at 164.0+ 0.3
MeV/c. This peak corresponds to M„,—M„=277.2
+ 0.3 MeV and agrees well with the substitutional lev-

el of (p3/2)~ '(p3/2)z, which has been observed in a

recent CERN experiment by Bertini et al. in the
(K, 7r+) reaction on ' C. The binding energy for

is —2.1 + 0.3 MeV. Its intensity is around 0.8% of
the stopped K total. The calculation of Yamazaki
et al. ' predicts the total Op population to be 5% of
the total X 7r+ production and thus 1% of all stopped
K . This is expected to be split into the two spin-
orbit doublet states with intensities 0.7'/o for
(p3/2)~ '(p3/2)x and 0.3% for (p3/2)~ '(pt/z)x per
stopped K . Therefore, the observed intensity is in
good agreement with the prediction. The calculated
shape of a the quasifree continuum is shown by a
dashed curve. The absolute scale of this curve is ad-
justed so as to explain the continuum part below 150
MeV/c. The hatched areas correspond to discrete hy-
pernuclear peaks above the quasifree continuum.

An extremely interesting question arises as to where
the X pt/2 level is located. In Fig. 1(a) there is an ad-
ditional peak at 158.0+ 0.6 MeV/c, which corresponds
to Mhy Mz ——28 1 .8 + 0.5 MeV, 5 MeV above the
X p3/2 level. This peak stands out very clearly above
the quasifree continuum. Its intensity is estimated to
be about 40% as much as that of the 277-MeV peak.

Figure 1(b) shows a 7r+ spectrum tagged by a 7r-
like signal in the photon counters. Among the various
sources of m emission the only possible process in
coincidence with the present m+-triggered events is
the free decay of A into n7r (36%). When a X decays
in the nucleus via XN AN conversion, a A is pro-
duced and then a 7r is emitted. Thus, the 7r+ spec-
trum tagged by 7r is expected to enhance the X
states that do not escape the nucleus. Actually, the
spectrum of Fig. 1(b) reveals the hypernuclear peaks
at 158 and 164 MeV/c more distinctly, while the con-
tinuous background is substantially suppressed be-
cause it arises from the quasifree production of X
and the in-flight decay of X+.

In the present case of K absorption at rest each
particle-hole configuration (j~,jr) appears as a mul-
tiplet of states (I = 1j~ jx1, . . . , j»+j@—), which are
split in energy and are also mixed with other config-
urations by the residual XN interaction. On the other
hand, the recoilless method populates dominantly the
I =0 component of the substitutional configuration.
The structure of p-shell hypernuclei with configuration
interactions has been studied theoretically by Auer-
bach et al. ' and by Majling et al. " In these realistic
calculations the experimental data on particle pickup
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reactions have been taken into account. In general,
the hypernuclear states are expressed as linear com-
binations of various configurations (I, Sj r)I, where
I, is one of the core states. In the case of
' C "B+p, most of the pickup strength goes to the
ground state ( —, )t, while the 2.1-MeV —, state and
the 5.0-MeV (—', )2 state take 20% and 10% of the to-
tal strength, respectively. Then, for I = 2+ we expect
two major peaks separated by the spin-orbit splitting
energy of X . The lower peak has a main configura-

3tion of I, = ( —, ),,jz ——p3/~, while the upper peak in-
3volves two mixed configurations, I, = ( —, ),,jz ——p, /2

3and I, = ( —, ),,jz ——p3/2.
The theoretical result of Majling et al. " indicates

that the energy of the upper peak with respect to the
lower remains nearly equal to the spin-orbit splitting
energy e&, though the wave functions of the upper
states include substantial mixing of the core excited
state. The configuration-mixing theory can also ac-
count for another small peak, 4 MeV above the second
peak; its main configuration is I, = ( —, )2,jz ——p»2. In
this way we understand the whole structure revealed in
the present experimental study. !n spite of the impor-
tance of configuration mixing, however, we can con-
tinue to use the "single-particle" and "weak-
coupling" terminology to a large extent. We have de-
duced the single-particle energies for X, as shown in
Fig. 2.

Let us discuss some important features obtained in
the present experiment.

(i) XN residual interaction The K.—absorption at
rest populates both I = 0+ and 2+ members of the
(pt/z, p3/2) configuration equally well, while the recoil-
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FIG. 2. Level structure of the 3 =12 hypernuclei re-
vealed from the present study (for X ) as well as from the
earlier work (Ref. 3) (for A). The widths are shown by the
hatching.

less method enhances only the I =0+ member. The
energy of the present peak (277.2 MeV) appears to be
only slightly lower than the energy reported by Bertini
et al. 9 (278 MeV). This means that the XN residual
interaction is very small. This fact supports the assign-
ment of the 282-MeV level to the spin-orbit partner;
an extreme opposite case of a small spin-orbit splitting
and a large residual interaction cannot be reconciled at
all.

(ii) The p 3/q pt/2 sp-in orbit -splitting of' X .—The
present experiment yields unambiguously ex = 5.0
+ 0.5 MeV. The corresponding nucleon value in ' 0

is ez = 6.4 MeV. Then, we obtain a ratio R
= ex/e~ = 0.8 + 0.1 . Since both the p 3/2 and p, /2 orbi-
tals of X lie above the threshold, it is not straightfor-
ward to deduce the spin-orbit term in the one-body po-
tential. This remains an open theoretical problem.
While the smallness of the spin-orbit splitting of A is
understood in most theories, the spin-orbit splitting of
X plays a crucial role in the discriminating of different
theories related to the origin of the spin-orbit interac-
tion. ' ' The present result can be compared with
various theoretical predictions. Roughly speaking, the
present result (R = 0.8) is in favor of the quark-
cluster model of Morimatsu et al. ' (R =0.7), but is
far from the predictions of the additive-quark model of
Pirner' (R =1.3), of the one-boson-exchange model
of Dover and Gal' (R =0.3—0.4), and of the meson-
mean-field theory of Bouyssy' (R = 0.5) and of
Brockmann and Weise' (R = 0.5).

(iii) Widths of the p3/2 and p, /2 levels The ob.—served
width of the py2 level is around 4 MeV, which is in
good agreement with the Bertini et al. result, while
the p~y2 level seems to be narrower. In view of the
doublet structure of the p3/2 peak (I = 0+ and 2+ ) the
width of the individual py2 level may also be narrower.
The width for an unbound X hypernuclear state arises
not only from the XN AN conversion process but
also from the escaping and spreading widths. The
former process ends up in the emission of A and sub-
sequently of m, while the latter does not. Therefore,
a spectrum tagged by ~ will reflect the conversion-
to-escape ratio. In the spectrum of Fig. 1(b) the 158-
and 164-MeV/c peaks appear to be enhanced more or
less equally. This may imply that both states decay
predominantly via the conversion process. It is
surprising that the p~i2 level, which lies 7 MeV above
the threshold, has still a narrow width.

(iv) Ost/2 orbital. The narrow co—nversion width is
currently explained in different ways. ' Here, the
most crucial test to discriminate among them is to look
for the Os ~~2 state. If the narrow width of the substitu-
tional states is due to a particular type of spin-isospin
selection or to a small overlap with nucleons, ' the
deep-lying Osq~2 state should be broader. On the other
hand, if it is due to some Pauli exclusion effect in nu-
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clei' or the suppression of nuclear spin-isospin excita-
tions, a narrow width is expected also for the Os~i2
state. For this purpose the stopped K method is
ideal, because the ground state is expected to be popu-
lated about —, as much as that of the p3~2 state. Unfor-
tunately, in the present parasite experiment this in-
teresting region was disturbed by the 173-MeV/c hy-
drogen peak. In the present data there is no structure
around the single sharp peak at 173 MeV/c. This
means that the X Os level is either too narrow (I ~ 2

MeV) sitting on the 173-MeV/c peak (Bx = +4.9
+ 0.3 MeV) or too broad (1 )8 MeV) to be observed

as a visible bump. This is all that we can say from the
present data, but a planned experiment with a pure-
carbon target will provide a clear-cut test.

In conclusion, we have demonstrated for the first
time that stopped-K, ~+ spectroscopy is a powerful
method for the production of X hypernuclei and
found that the spin-orbit interaction of X is slightly
smaller than that for nucleons. An extended experi-
mental program is under way at KEK.
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