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For asymptotically free theories, ultraviolet divergences computed in the 1/N expansion
with dimensional regularization reduce to simple poles plus powers of lne or finite terms.
The theories are effectively superrenormalizable since all divergences are determined by the
one- and two-loop perturbative renormalization-group functions.
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Perturbative renormalizability has served as a
powerful tool in the selection of physically admissi-
ble models, most notably in the development of the
non-Abelian gauge theory of electroweak and
strong interactions. It may be that only asymptoti-
cally free theories are actually renormalizable. In
such theories the high-momentum behavior of ir-
reducible vertex functions calculated to all orders
differs only logarithmically from the growth predict-
ed by naive power counting. With infrared free
theories, however, the vertex functions may grow
by extra powers of the large momentum because
the anomalous dimensions do not vanish in the ul-
traviolet limit. This means that the divergence of
the full theory may be worse than those encoun-
tered order by order in perturbation theory and that
the renormalization scheme may break down when
an infinite set of diagrams is summed.!

In this paper we report some results on nonper-
turbative renormalization of asymptotically free
theories which support and extend these ideas.
More detailed accounts of the calculations and of
their extension to infrared free theories are present-
ed elsewhere.”? We consider field-theory models
which admit expansions in powers of 1/N where N
is the number of internal components of a field.*
Previous investigations of these expansions have
concentrated generally on calculation of their
behavior to leading order in 1/N or on exact solu-
tion of the S matrices and spectra. Though there
have been general discussions of the renormaliza-
bility of Green’s functions in 1/N expansions of
various theories, very few explicit calculations of
the ultraviolet divergences beyond the leading order
have appeared.

With use of dimensional regularization to carry
out such calculations to the next to leading order,
we have discovered new results. In perturbation
theory the singularities associated with such a regu-
larization are poles in €, where € is the number of
extra dimensions of space-time. For asymptotically
free models we find that beyond the leading order
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in 1/N where simple poles in e occur, the ultraviolet
divergences consist only of additional simple poles
plus powers of Ine.

These results are supported by calculations based
on the renormalization-group functions determined
from perturbation theory. The renormalization-
group analysis leads to the further conclusion that
the ultraviolet divergences of the 1/N expansion for
asymptotically free theories are determined com-
pletely by the one- and two-loop divergences of the
perturbative expansions. Thus, these theories are
effectively superrenormalizable in the 1/N expan-
sion. The results leading to these conclusions are
summarized below.

The asymptotically free models we have con-
sidered explicitly are the nonlinear sigma model
(NLSM)3 and the Gross-Neveu model (GNM)®
near d =2. The Lagrangian density for the former
can be written as

L =3 @,m9,m) — 7\ ('n/— N/g?), )

where j=1,...,N labels the components of the
scalar field n, and A is a Lagrange multiplier field
which implements the nonlinear constraint in the
parentheses. In the 1/N expansion a mass is
dynamically generated for the m quanta. Green’s
functions involving external = particles require
wave-function and coupling-constant renormaliza-
tions with the corresponding constants Z, and Z,
(a=g?%2w). Both can be determined by calculat-
ing the self-energy of the n field. To O(1/N) we
find

Z,=1+(1/N)lne,
and
Z;'=1+al(1=2/N)/e— (1/N)lnel. (2)

The perturbative renormalization-group functions

for this model are’
o?
~ || 3)
965
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and

yp=a/2N + 0 (a¥/N). (4)

The corresponding renormalization constants are
determined from

-1 B(X)/x
W2 = et aGTT ®
and
¥, (X)/x?
InZ,, 2f[_€+ﬁ(x)/x]d 6)

where d =2—¢. (Note that for e > 0 for d < 2.)

We integrate to find Z, using the two-loop B
function. Actually, it is convenient to use the
modified form

Bla)=—aa/(1—ba),
@)

a=1-2/N, b=1/N,

which differs from the two-loop answer only in
higher orders. We show later that the divergences
of Z, are insensitive to such higher-order contribu-
tions. Substituting in Eq. (5) gives

InZ;'=[1-be/al 'In[1+ (a—be)a/el. (8)
Exanding in powers of « gives

aa § (=D*
€ o (k+1)

a—be
€

InZ;'=

k
a] , 9)

which has the expected structure as a sum of poles.
However, an expansion in powers of & ~ O (1/N)

Inz® —nz,=< [ h (x)

a’o (1+bx)[1+bx +x%h(x)]

and
ch (x) +ag (x)(1+ bx)

Inz® ~nz,= [

Similar results appear in the GNM at d =2. The
Lagrangian density is
L =V;igV, +(N/2g?) (¥, ¥))2.

The theory requires a wave-function and a
coupling-constant renormalization. Defining
a=g? = in this case, calculation of the self-energy
to O (1/N) gives

Z ' =1+al(1—1/N)e~ '+ (1/2N)Inel,

a7

(18)
and
Z ¢ =1+ (finite terms). (19)
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0 g2(14bx)[1+bx +x2h(x)]

dx + 0 (€’Ine),

dx + O (elne).

gives

Z;7 =1+ 4% _ palne+ (finite terms),
€

(10)

which agrees exactly with our explicit calculation.
With the one-loop anomalous dimension of Eq. (4)
and the B function of Eq. (7), the wave-function re-
normalization constant is given by Eq. (6) as

——n1+“—'—b—€a'—ba],
€

1D

c=—1/2N.

Expanding in powers of 1/N and letting e — 0 gives

InZ,= Ine + (finite terms), (12)

1
N-2
which agrees with our explicit calculation of Z, to
O(1/N).

Furthermore, the higher-order perturbative con-
tributions to 8 and y give only terms which do not
diverge as e — 0. These extra terms can be scaled
away by finite renormalizations and the forms given
in Egs. (10) and (12) with the finite pieces dropped
are sufficient to renormalize the theory in the 1/N
expansion. To see this explicitly, write

Bla)=aad?ll+ba+a’h(a)l, (13)
and
y(a)=ca+a2g(a), (14)

where h(«) and g(a«) are O(1/N) and finite at
a=0. Using the superscript (2) to denote two-loop
quantities, we find

(15)

(16)

[

To the required order the perturbative renor-
malization-group functions are

B(a)=—(1-1/N)a*[1—a/2(N—-1)],
and
yy(a) =a?/8N. 2D

The charge-renormalization constant with the
minimally required divergent structure may be
found as for the NLSM with the result

Z7'=1+(1-1/Nae '+ [a/2(N —1)]Ine
(22)

(20)
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while Zy is finite. These results agree with our ex-
plicit calculations to O (1/N).

Though the predictions of the ultraviolet singu-
larities of the 1/N expansions can be deduced
directly from the renormalization constants deter-
mined from low-order perturbation theory, we
would not have been confident about accepting
these results without the support of explicit calcula-
tions. Each order of the 1/N expansion includes an
infinite subset of the perturbative Feynman graphs.
With the evidence of these model calculations to
validate the procedure, however, we can apply the
renormalization-group method to an important case
were explicit 1/N calculations have not yet proved
feasible, namely, non-Abelian gauge theories.

For an SU(N) theory with N, flavors of fermions
in the fundamental representation and with the
gauge coupling constant written as g2=a/N the
two-loop B function is?

B(a)=—Bya?+B,a’, (23)
with
Bo=(87%)~'[11/3—2N,/3N],

and

2
pm— L |3, 1% e )
(1672)?2 3 3N N?

This B function can be written in the form of Eq.
(7) with a=By and b=—B%B,. In this case
b~ 0(1), but the singular part of Z; ! is still
given by Eq. (10). The lne singularity enters at the
zeroth order of 1/N rather than at the first order as
in the two-dimensional models. This is not surpris-
ing since the lowest-order contributions for the
NLSM and the GNM are sums of an infinite set of
bubble graphs, which require only single-pole re-
normalizations, while the lowest-order terms for
gauge theories consist of all planar graphs which
have more complicated divergences.

The question remains as to which divergent
structure reflects the true behavior of the theory,
perturbation theory or the 1/N expansion. For the
NLSM and GNM, the exact S matrices are known
and their only natural expansion parameter is 1/N.°
Also, dynamical mass generation which is the
correct phase for these models in two dimensions
occurs naturally at the lowest order in 1/N. For
non-Abelian gauge theories, it has been argued that
the 1/N expansion is consistent with confinement
even if it has not been proved in that scheme.!?
The importance of the expansion for the strong in-

teractions may be not that % is such a small param-
eter but rather that the 1/N formulation starts out
in the correct phase for the four-dimensional
theory.

On the other hand, the perturbation singularities
seem to give more information about the short-
distance behavior of hard processes such as deep-
inelastic lepton scattering and the Drell-Yan
mechanism. It has not been proved that an
operator-product expansion exists in the 1/N
scheme. There may be a sort of complementarity in
which perturbation theory is best for studying fac-
torization and scaling violations in hard processes,
and 1/N is best for understanding confinement,
spectra, and on-mass-shell interactions.
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