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Fractal Boundary for Chaos in a Two-State Mechanical Oscillator
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Measurements of chaotic vibrations of a forced nonlinear oscillator with a two-well poten-
tial suggest that the frequency-amplitude boundary between periodic and chaotic motions
may be fractal. The fractal dimension of this curve is 1.26. The experiment consisted of an
elastic beam and magnets which were used to create two stable equilibrium positions.
Analysis has shown that this system possesses strange-attractor solutions for a single-mode
model. However, a fractal boundary suggests that the role of higher modes may be impor-

tant.

PACS numbers: 05.40.+j

Nonlinear dynamics in a classical two-well poten-
tial have been studied as a model for plasma oscilla-
tion by Mahaffey! and for vibrations of a buckled
elastic beam by Holmes.? In previous studies®* we
reported strange-attractor vibrations of a buckled
nonlinear elastic beam. This system has two stable
and one unstable equilibrium points as shown in the
zero-damping phase portrait in Fig. 1. Forced oscil-
lations of this system have been studied analytical-
ly, numerically,? and by experiment.>* This model
of a strange attractor is one of the few that has re-
ceived both extensive experimental as well as
theoretical analysis. The mathematical model using
a one degree-of-freedom approximation has the
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FIG. 1. Top: Phase plane portrait of separatrix for the
undamped, unforced system. Bottom: Sketch of experi-
mental apparatus showing steel beam and two magnets.

form
A+y4d—+(1—4Y4 = f coswt, 1)

where A4 is the modal amplitude of the first vibra-
tion mode and (1) is based on a Galerkin projection
of the partial differential equations for the flexible
beam. Extensive study of this system has shown
that it possesses chaotic solutions for given parame-
ters (y,f,w) and initial conditions. Experimental
observations of this system do not exhibit a
periodic-doubling route to chaos, however.
Holmes? has derived a necessary condition for
chaos which takes the form of a smooth function of

(y.f, ®):
f= (7\/5/37rw)cosh(7rw/\/§). 2)

The author has also derived a more heuristic condi-
tion based on the velocity necessary to jump out of
the energy well*:
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where « is a parameter close to 1. Experimental
measurements® of the critical forcing amplitude
between chaotic motion and periodic motions, how-
ever, revealed a nonsmooth boundary with driving
frequency as a parameter. This variability was
much greater than experimental errors in the sys-
tem. At least five sets of data for chaotic boun-
daries were taken for different magnet-beam confi-
gurations and all showed a nonsmooth behavior. A
Poincaré map of this system can be obtained by
measuring (4,4 ) at a certain phase of the driving
force in (1). These experimental maps showed a
stable pattern over many hours (Fig. 2).

Recent papers on the fractal nature of chaotic
motions have encouraged the author to speculate as
to whether the boundary is fractal. Grebogi, Ott,
and Yorke® have observed fractal boundaries of ini-
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FIG. 2. Experimental Poincaré map for chaotic vibra-
tions of a buckled beam.

tial conditions for a two-dimensional map which
leads to chaos in numerical simulation. Malraison
et al.® have measured the fractal dimension of the
chaotic time history of temperature in Rayleigh-
Bénard convection.

In this paper I propose that the boundary between
chaotic and periodic oscillations in a parameter
space is fractal. This behavior is believed to be re-
lated to the higher vibration modes in the beam
which are neglected in the one-mode model ex-
pressed in (1).

The experiment has been described in Refs. 2
and 3. The clamped end of the beam is driven by
an electromagnetic vibrator where f= —w?4 0-
With the beam vibrating initially with periodic
motion in one of the potential wells, the amplitude
was increased until the beam jumped out of the
well. To determine whether the motion was period-
ic or chaotic, an experimental Poincaré map (i.e., a
set of points in the 4,4 plane) was used which was
synchronized with the forcing amplitude. Chaos
was determined when a finite set of points (subhar-
monic motion) became unstable and a Cantor-
set-like pattern appeared on the screen similar to
that in Fig. 2. All measurements were made for in-
creasing frequency. However, on the basis of a few
measurements, I believe that the criterion is hys-
teretic with regard to increasing or decreasing am-
plitude.

In an earlier experiment,’ approximately 35 fre-
quencies were explored in a domain between 5-10
Hz. Three other sets of data showed similar
behavior. At that time we did not suspect that the
boundary might be fractal, on the basis of the
analysis leading to (2) and (3). In this recent ex-
periment we measured the boundary at approxi-
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FIG. 3. Comparison of experimental and theoretical
boundaries between periodic and chaotic vibrations.

mately 70 frequencies between 4-9 Hz. Typical of
all measurements of the criterion for chaos are the
data shown in Fig. 3. This is in contrast to the
smooth boundaries predicted by Moon* and
Holmes.>?

To measure the fractal dimension of the experi-
mental boundary for chaos, in the (4, ») plane the
curve between two points P; and P, is approximat-
ed by a connected set of N straight lines of length /.
The length of the approximate curve is then L = NI.
As |— 0, N— . For a smooth or nonfractal
curve N — A/~ ! and we call \ the length. Howev-
er, for a fractal curve N — A/~ P so that

L=)\"'"D 4)

When D is not an integer the curve is called fractal.
This definition is identical to that of the capacity of
a set.” In this experiment a drafter’s caliper was
used to measure the length of the curves in Fig. 3
for ten different caliper lengths. This simple tech-
nique for determining the fractal dimension of a
curve is described by Mandelbrot® for the problem
of measuring the length of coast lines. These data
are shown plotted in Fig. 4 for two sets of data—
one set reported in Ref. 3, and the other with twice
the number of measurements conducted for this
study. Note that at the time we reported data in
Ref. 3, we did not suspect a fractal curve. The total
length shows a behavior characteristic of fractal
sets, namely, an increase in length with a increase
in . The two slopes of the curves in Fig. 4 as deter-
mined by a least-squares fit lead to fractal dimen-
sions of D =1.24 and 1.28.
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FIG. 4. Total length of the experimental boundary
curve, L, as a function of caliper length, /.

Ott and co-workers at the University of Maryland
have argued that the minimum dimension for chaos
for an invertible map is two, and for a fractal basin
boundary (for initial conditions) one must have a
three-dimensional map. For the forced Duffing
equation (1), the Poincaré map of the system of
differential equations is two dimensional (Fig. 2)
and this leads to the question of whether fractal
behavior in the parameter space is to be expected.
In fact, numerical simulation of (1) seems to sup-
port Ott’s conjecture that a smooth boundary
should result. In the experimental system, howev-
er, we may resolve the problem by recognizing that
the physical system is really of infinite dimension,
although a one-mode projection seems to reproduce
all the qualitative behavior—including chaos. This
suggests that the higher modes of vibration are re-
quired to explain the fractal nature of the chaos cri-
terion. One could use the first N (N =2) free-
vibration modes of the elastic beam to describe the
motion. The equation of motion for the transverse
deflection of the beam v(x,?) is given by>?®

v+aZv" + b

—[ev(L) +dv3(L)1s(x—L)=—V (1), (5
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where ¥ (1) is the harmonic motion of the clamped
base and the fourth term on the left side of (5)
represents the magnetic force components at the tip
of the beam.’ Using Galerkin’s method one can
derive two coupled ordinary differential equations
for the modal amplitudes. The Poincaré map of
this system would be four dimensional or higher
which would satisfy the criterion of Ott for fractal
boundaries.

The erratic nature of the boundary between
chaotic and periodic motion is much larger than the
experimental errors in the measurements. Given
the known fractal nature of the strange attractor it-
self and basin boundaries there is convincing evi-
dence that the chaos boundary measured in this ex-
periment is fractal and is related to the influence of
higher modes. Possible implications of these
results are that parameter space boundaries between
chaotic or turbulent and periodic motions in con-
tinuous systems may be fractal. Thus a clear-cut
criterion may not be possible as is often found ex-
perimentally in fluid mechanics. Variability in the
critical parameter for chaos or turbulence may be
inherent in many continuous systems and may not
be solely related to experimental errors.

The author would like to recongnize the contri-
bution of GuangXuan Li of Cornell University for
his careful work in repeating the experiments in
Refs. 3 and 4.
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