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Models of Hierarchically Constrained Dynamics for Glassy Relaxation
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A class of models for relaxation in strongly interacting glassy materials is suggested. De-
grees of freedom are divided into a sequence of levels such that those in level n+1 are
locked except when some of those in level n find the right combination to release them, this
representing the hierarchy of constraints in real systems. The Kohlrausch anomalous relaxa-
tion law, exp[ —(t/r )~], emerges naturally, and a maximum time scale is found which exhi-
bits a Vogel-Fulcher —type temperature dependence.

PACS numbers: 05.50.+q, 46.30.Jv, 61.40.—a, 64.70.Ew

Since Kohlrausch' it has gradually become clear
that the relaxation in complex, slowly relaxing,
strongly interacting materials often follows the
stretched exponential form

q(t) =qoexp[ —(t/r)P], 0(P (1.
This "anomalous" relaxation appears to be far
more common than the "conventional" Debye ex-
ponential form (P = 1). Kohlrausch' first suggest-
ed Eq. (1) as a description of viscoelasticity. Wil-
liams and Watts2 postulated the same function for
dielectric relaxation. Jonscher, and most recently
Ngai, 4 have collected many examples, the latter
proposing that it occurs in a very wide range of
phenomena and materials. It has also been reported
recently for the relaxation of remanent magnetiza-
tion in spin glasses, and appears to provide a
reasonable fit to spin relaxation in spin-glass alloys
above Tf.

We propose a class of models that we believe cap-
tures the essential physics of relaxation in complex
strongly interacting materials. In contrast to earlier
attempts4 7 s at explaining Eq. (1), our models are
based on hierarchically constrained dynamics, from
which the Kohlrausch law arises naturally.

Conventional Debye relaxation,

q(t) = qoexp( —t/r),

is characterized by a single relevant relaxation time
7—there are no appreciable dynamic correlations
on a time scale longer than v. The simplest way to
obtain a different result for q(t) is to postulate a
statistical distribution of relaxation times ~ across
different atoms, clusters, or degrees of freedom.
Then, with the assumption of additive contributions
to the relaxing quantity q (t), it is natural to write

q(t) =J) w(r)exp( —t/r)dr

Any reasonable q(t) can thus be "explained" by a
suitable choice of the weight distribution w(r).
However, this approach is microscopically arbitrary,
and does not explain the universality of
Kohlrausch's law. It is also normally associated
with a picture of parallel relaxation, in which each
degree of freedom x; relaxes independently with
characteristic time 7;. We believe instead that a
series interpretation is more appropriate, with the
path to equilibrium involving many sequential
correlated activation steps. The same equation (2)
may be used, but the w (7) distribution must have a
microscopic source in the correlations —or
constraints —between different degrees of freedom.

In our view, a successful theory of glassy relaxa-
tion must satisfy three requirements:

(1) The theory must be based on dynamics, not
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T~ —exp[A/( T Tp) ]. — (3)

The strong constraints discussed here must not be
identified with frustration, though it is possible to
see static frustration over many length scales as the
underlying cause of dynamical constraints over
many time scales.

(3) The theory should involve a hierarchy of de-
grees of freedom, from fast to slow. The fastest de-
grees of freedom might involve single-atom
motion. Other atoms, or groups of atoms, might
only be able to move appreciably when several of
the fastest happen to move in just the right way,
leaving a hole or weakening a bond, perhaps. Such
a hierarchical scheme, with faster degrees of free-
dom successively constraining slower ones, seems
to us the only reasonably natural way of generating
a wide range of relaxation times. The scheme also
exhibits a series, rather than parallel, approach to
equilibrium, as suggested above. In a real system
there will be reverse constraints too, in which the
state of the slower degrees of freedom determines

just statistics. Glassy systems clearly break ergodici-
ty, ' so that equilibrium distributions in configura-
tion space are of little use. The free-energy barriers
dominating relaxation will in general depend on the
time scale of observation, which determines which
processes are (i) effectively frozen, (ii) so fast as to
be included in the entropy, or (iii) in an intermedi-
ate "active" class. The free-energy surface should
therefore be renormalized as time progresses by in-
tegrating fast degrees of freedom out into entropy.
We proceed instead with a directly dynamical ap-
proach, and make connections with this quasistatist-
ical view later.

(2) The theory must involve constraints We .can-
not diagonalize any reasonable nonlinear system
into independent modes, so we expect to be left
with interactions among any chosen set of coordi-
nates. In the strongly interacting systems under
study these interactions are primarily constraints in
which, for example, atom (or cluster) A cannot
move until atom (or cluster) B moves out of the
way. Indeed, the dominance of constraints persists
over a very wide range of time scales; 70& t(r,„, say where 7p is a microscopic time (e.g. ,
10 '4 s) and 7~,„ is many orders of magnitude
longer. The ergodic time ~,„grows larger than ex-
perimental times as temperature T is reduced
through the glass transition temperature Tg. ' For
T& Tg we speculate that ~,„ follows a Vogel-
Fulcher-type law which is experimentally observed
for characteristic times ~ such as appear in Eq.
(1)." That is, we expect

q(t) =N 'X, , (S,(0)S,(t)),
where N = g„p N„, which gives on average

q(t) = X„"pw„exp( —t/r„),

(6)

(7)

with w„=N„/¹ To avoid factors of 2 in Eq. (7)
the probability per unit time of flipping a level-n
spin is taken as 2/7„.

Thus far the theory contains two unspecified
functions, p, „and w„(or N„). The physical picture
of constrained atomic motion suggests that p, „
should be at most 5 or 10, but could be less than 1
to represent a weak constraint. For T & Tg we ex-
pect a large but finite value of ~,„=lim„7„if
the model considered is to be relevant for glassy re-
laxation. Thus p, „should decrease with n rapidly
enough to make gp, „convergent, but barely so.
We therefore expect our model to be relevant to
glassy liquids when

~0 « & ~max & ~. (8)

For t » r,„, Eq (8) will necessarily give pure ex-
ponential relaxation.

We have examined three simple postulates for
p, „.'(a) Constant, p, „=p,p', (b) exponential, p, „=p,p
x exp( —yn); and (c) power law, p, „=p, pn Pos-.
tulate (a), and postulate (c) for p ~ 1, do not give a
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the detailed dynamics of the faster ones.
We propose the simplest possible model that em-

bodies these three principles. We supply no detailed
microscopic connection, hoping only to find a
model in the right dynamical universality class. We
consider a discrete series of levels, n =0, 1, 2, . . .,
with the degrees of freedom in level n represented
by N„ Ising spins (or pseudospins) S, . Each spin in
level n+ 1 is only free to change its state if a condi-
tion on some spins in level n is satisfied; for defin-
iteness we take the condition to be that p, „spins in
level n (p,„~N„) attain one particular state of
their 2"" possible ones. Ignoring all intralevel
correlations, the average relaxation times Y„will be
related by

~n+ I 2 ~n~ (4)

giving

r ='rpexp(xk-pPk)

where P,k= p, k ln2. If p, „&N„/N„+t there will be
overlap in level n, with some spins involved in the
constraint of more than one level-(n+1) spin.
This induces some intralevel correlations, which
should not, however, be important at long times.
The relaxation function q (t) may be computed as
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finite ~,„, but may be interesting for the region
T & T~. In (b) we need y && 1 to get a large 7,„,
while in (c) we need p —1 « 1.

The weights w„=N„/N must also decrease to
make N = g„p N„convergent. We have con-
sidered three postulates for N„: (d) N„+&=N„/&;
(e) N„=p, „/ o(n(1); (f) N„+t= (N„/a)p„Th. e
geometric choice (d) is the simplest satisfactory
guess. Choice (e) seems at first reasonable —a
fixed fraction o. of the spins level n constrain each
one in level n+ 1—but takes no natural account of
the locality of constraints (p,„(5), particularly in
the thermodynamic limit N„~. Choice (f) re-
lates the ratio of spins in successive levels to the
constraint condition operating between the levels.

Detailed results for each case of interest will be
reported elsewhere. ' Here we mention certain in-

teresting cases. Case (a), (d) is exactly soluble in
terms of an incomplete gamma function, and gives
power-law relaxation, q ( t) —t t}"")tf', at long
times. Case (b), (d) gives a crossover from power-
law behavior q(t) —t t'""i't for t & r,„ to pure
exponential, q(t) —exp( —t/r, „) for t»7, „
Case (c), (d) gives q(t) —exp[ —(tnt)tt ' t' ) for
0 & p & 1, a form also found by Palmer, Sethna,
and Langer' as a lower bound for spin-glass relaxa-
tion. Identification with their result gives
p= 1 —I/d, where d is the dimensionality of the
spin glass. The case p =1, which signals the onset
of the Kohlrausch law (see below), corresponds to
d ~ in their model.

Most interesting is the case (c),(d) with p) 1,
which corresponds to the condition Eq. (8) and
gives the Kohlrausch law. Replacing Eq. (8) by an
integral, we find

q(t}=ne J del "exp}—t/ eexpftte((p;n}}},

where for large n

$(p;n) = X„" t I(. t'= (p —1) t+yp+yt(p —1). . .—nt ~/(p —1),

with y, known constants.
We first examine the case p=1, which corre-

sponds to the weakest divergence of ~,„within this
class of models. In this case Eq. (9) becomes

q(t) =wo)I dn l} "exp, — n
roexp(P oyo)

l

e lnt, we find for this region

q ( t) w exp( gtP+ cd ill()

where

t = [P,o/(in'(. )exp(}((,pyp eyl) ] (t/7p),

A = (1+}M,p )in'. ,

(15)

/3= I/(1+} o).

This leads finally to

q(t) —w e

with

(12)

(13)

ln)
7'=rpeXP(Ppyp) [I+ado]

P,o
(14)

The next order correction that appears in the ex-
ponent is of order In(t/r) which is negligible for
large t.

Our previous discussion indicates that the case

p = 1+e (e « 1), which satisfies Eq. (8), is

relevant to glassy relaxation. For t )& ~,„, relaxa-
tion is simple exponential. The interesting region is

To (( t ( 7' „. Expanding in the small parameter

This integral is adequately treated by saddle-point
integration for large t. The saddle-point condition
is n~ t, with

and C = tdp/[2(1+ tdp)']. This equation holds
when & lnt (& 1, and is barely distinguishable from
the exact Kohlrausch form Eq. (13).

We expect p to be a monotonically increasing
function of T, since as temperature increases more
correlations get broken on a given time scale. At
some temperature To,p = 1 and 7,„~.We as-

sume that nothing spectacular or pathological oc-
curs at this or any other temperature, but rather
that p remains a smooth function throughout, with
a value of unity at Tp. For p = 1, Eq. (13) holds for
all t » ~0, while for p & 1 there is a crossover
back to pure exponential behavior for t & ~ „,
where

T „='7p exp[(,p/(p —1) ],

for p close to 1. Linearizing the temperature depen-
dence of p near To, we immediately obtain a Vogel-
Fulcher law (3) for r,„, with Tp defined by

p ( To) = 1. We should note, however, that the
characteristic time ~ (essentially a renormalized 7 p)
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of relaxation in the Kohlrausch regime [Eqs. (13)
and (14)] remains finite, so the connection to ex-
periment is still unclear.

Finally, the more complex case (c),(f) gives only
logarithmic corrections to the (c),(d) Kohlrausch-
law result, replacing t by t lnt in Eq. (13). Indeed
the Kohlrausch-law result, or a form barely distin-
guishable from it experimentally, seems to emerge
from a wide range of assumptions for N„.

The following picture therefore emerges: At a
fixed temperature slightly above T~, relaxation over
time scales between ~0 and v,„ is of the
Kohlrausch form (with a small correction) crossing
over to pure exponential behavior (e ™x)for
t && v,„, when the system becomes ergodic. As
the temperature is lowered, Y,„diverges in the
Vogel manner, leaving behind a larger region of
Kohlrausch relaxation (which becomes increasingly
exact) as it does so.

In conclusion, an extremely simple class of
models of hierarchically constrained dynamics has
been defined and found to give Kohlrausch time
dependence rather naturally. In addition, the max-
imum time scale v,„ for Kohlrausch behavior ex-
hibits a Vogel-Fulcher-type behavior. Many exten-
sions are possible, including energy barriers, reverse
constraints, and other p,„or W„postulates. %hile
we believe the essential physics behind the models
to be correct, they are intended to be phenomeno-
logical and illustrative. A complete connection to
microscopic dynamics and geometrical constraints

in real glassy systems has not yet been built.
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