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Polymers of arbitrary fractal connectivity are considered. A Flory theory of chain swelling,
with an n-body repulsion, gives a lower critical dimension equal to the spectral dimension, d„
for any polymeric fractal with d, ( 2. The scaling form of the frequency-dependent complex
viscosity of a monodisperse solution of polymeric fractals (at low or high concentration) is
given in the absence of excluded-volume and entanglement effects.
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Recently, important progress has been made in
the theoretical description of various physical
processes (such as the diffusion of a particle) when
these processes are constrained to take place on a
fractal. ' Central to this progress has been the in-
troduction of an anomalous spectral or fracton
dimension to describe the density of states of the
generalized Laplacian operator. ' In this paper these
advances are exploited in the description of the stat-
ic partition function and dynamical properties of a
fractal itself. The excluded-volume problem is dis-
cussed at the Flory level: This turns out to be very
simple. Some preliminary dynamical results, con-
cerning the viscoelasticity of a solution of polymeric
fractals, are also given.

The term "polymeric fractal" is here introduced
to describe a class of fractals which are made of
flexible polymer chain at short length scales, but
have arbitrary self-similar connectivity at larger dis-
tances. Any such fractal has no inherent rigidity; its
dynamics are diffusive and not vibrational. The
formulation and results of this Letter allow discus-
sion, within a single framework, of the statics and
dynamics of a large range of physically interesting
polymeric fractals, such as gelation clusters,
branched polymers, and, perhaps, flexible types of
fractal aggregates.

Formalism. —The following treatment is an exten-
sion of the Alexander "wire" model of fractal con-
nectivity. ' Consider a hypercubic lattice Son which
is inscribed an arbitrary (random or deterministic)
connected lattice fractal (s;). This means that every
site in the set (s,) is adjacent to at least one other,
and that the set is self-similar on any length scale
much larger than a lattice spacing and much smaller
than its linear size, Lo, in S space. Let every adja-
cent pair be joined by a single bond, and define a
set (s) which includes (s;) and also coordinates s for
all the points along each bond. Denote the fractal
dimension by dfo and the mass, or total number of

doelements in (s,), by M; then M —L '. A random

walk, s(t), on the fractal obeys ([s(t) —s(0)]z)
wo2/d

The spectral dimension, d„may be defined' by
d, =2dftutd~o. The spectral dimension is important
because it is independent of the spatial configura-
tion; it is an intrinsic parameter of the network con-
nectivity.

Note that d, ~ 1, because the set (s;) is connect-
ed. For the moment, we insist that d, (2. The
resistance exponent, xo, is defined by ( O,~~)

Is; —s&I '. Here Q,~ is the resistance between
sites s; and s, , allowing conduction only along the
bonds; m is chosen so that the moment exists as
Lo ~ (this may require that m ( 0). For d, ( 2,
the Einstein relation, d„o= dfo+ xo, is obeyed and
hence d, = 2df, /(dfrt+ xo).

Let us now replace every bond in the fractal by an
identical section of ideal phantom polymer chain;
the "occupied" sites (s,) are chain ends, connec-
tors, or cross-links according to coordination
number (1, 2, or ) 2, respectively). Note that
even a single bond corresponds to a long, flexible
piece of polymer —there is no rigidity in the struc-
ture. The above procedure defines the statistical
connectivity of a polymeric network. The connec-
tivity is characterized only by the spectral dimen-
sion d, ; from now on d„o, dfo, and xo may be for-
gotten.

Now suppose we embed the polymeric network in
a Euclidean space of dimension d, and consider it in
an appropriate thermal ensemble (in the presence
of excluded-volume forces, if required). For each
member of the ensemble, a position R in Euclidean
space is specified for every member of the set (s).
The resulting functional probability distribution,
P(R (s)], defines, statistically, a new random frac-
tal, R (s), which may be termed a "polymeric frac-
tal. " Note that the ensemble considered here is at
constant network connectivity, rather than, say,
constant fugacity for branch points.

Statics In general, R(s).—will have a new size,

926 1984 The American Physical Society



VOLUME 53, NUMBER 9 PHYSICAL REVIEW LETTERS 27 AUGUST 1984

x=2 (for ideal phantoms). (2)

Note that this applies even in the presence of loops.
Equations (1) and (2) allow discussion of the

excluded-volume problem for polymeric fractals
generally at the Flory level. 7 Consider a fractal of
some d, and "ideal" size L. The Flory free energy
in the presence of an n-body repulsion is given as a
function of the swollen size, L', by

F(L') = (L'/L) +M"L"
The normal choice is, of course, n =2, but other
values are sometimes appropriate. The usual
minimization yields a swollen-fractal dimension df,
which may be expressed in terms of df or d, :

df'= df [(n —1)d+ 2]/[2+ ndf1

= d, [(n —1)d+2]/[(n —1)d, +2]. (3)

The upper critical space dimension is easily found;
it is

d«= ndf/(n —1)= 2nd, /[(n —1) (2 —d, ) ].
The lower critical space dimension, d&„ in which
df=d, ls

d), = 2df/(2+ df) (4)

for all polymeric fractals, and independent of n.

This is an interesting result; an interpretation is
given below.

It is also interesting to note that Eq. (3) is valid
for a repulsion c", for all n & 1, not just integer
values (c is the internal monomer concentration).
Because c is small, the most efficient possible repul-
sion comes from a low power of c. The limiting
case is therefore n 1 from above (or, equivalent-
ly, an interaction of the form c loge). Inserting this
into Eq. (3) gives, for all space dimensions, df'= d, .

L, and new exponents df, d„, and x. There will

usually be new contacts (multiple points) which are
not cross-linked. For the purpose of defining d„
and x, these accidental contacts are insulating; a ran-
dom walker cannot jump across at them. Subject to
this definition, the spectral dimension is configura-
tion invariant. '

The new df and x therefore obey d, =2df/d„,
where d„=df+x; hence

df = d,x/(2- dg).

For the particular case of idea/phantom fractals (no
excluded-volume forces) there is an exact
correspondence between the resistance and spatial
separation: ( [R (s,) —R (s~) ]~) —0;,, and there-
fore

This suggests, as does Eq. (4), that there is a strong
inhibition against a value df'& d, . These results
may be explained by the following argument (which
is based in part on the discussion given by Alex-
ander er ai. s).

For any fractal, a relation df ( d, implies that
d„(2. Therefore a random walk on the fractal
makes faster progress than it would in free space, or
on a straight line. Such progress is only possible if
the motion includes long-range hops in space. This
can be arranged in principle, because the time taken
to diffuse down a polymeric strand is independent
of the length to which it is stretched. Hops can oc-
cur, if (and only if) some sites which are adjacent in
5 are separated by large distances in R(s). But
since these hops must occur on all length scales, the
corresponding free-energy penalty from stretching
the polymer strands is extremely large; at least
some of the bonds must be stretched to lengths
comparable with L' itself. If one tries to embed an
infinite fractal in a Euclidean space of dimension
d( d„ it will, by a similar argument, cause the
mean square bond length to be unbounded, with a
correspondingly infinite elastic penalty. We have,
in effect, a bound, df ~ d„which is saturated in the
limit of extreme repulsion (n 1) and at the lower
critical dimension.

When we look beyond Flory theory, new ques-
tions arise; for example, does the exact value of df
depend only on d„or are other details important?
Also, for a network containing loops, topological
constraints (noncrossing of polymer strands) have
effects separate from those of excluded volume.

Finally, there follow some remarks about the case
of d, ~2. From Eq. (1), as d, 2, df ~, the
structure is collapsed in all dimensions. For d, & 2,
the resistance of the network is dominated by local
contributions, and the Einstein relation, d„=df+ x,
ceases to apply: Instead xo=x=0. Hence for an
ideal Gaussian network, ([R (s;) —R (sj)]~) —

A~&

=const, for all pairs (s, ,sj). Thus as M increases,
L saturates, and the density diverges. The likely ef-
fect of excluded volume would be to limit the
divergent density to a constant (i.e. , close-packed)
value. For d, =2, there will in general be loga-
rithmic effects.

Dynamics. —A dynamical theory is possible be-
cause the generalized Laplacian operator, ' '7„con-
trols the thermodynamic force on a member in the
ensemble P[R(s)] appropriate to ideal phantom
fractals (i.e. , with excluded-volume and entangle-
ment effects ignored).

For example, the Rouse equation for an arbi-
trary polymeric network, undergoing diffusive
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motion in the presence of a local friction, v, is

[v 8/8 t —(ka T/i) '7, ]R (s) = random force. (5)

(Here i is a steplength; from now on kaT//l is set
equal to unity. ) The spectral dimension, d„ is
therefore the dimensionality of a generalized
"Rouse-mode" q space. One can now obtain, for
this simple dynamical model, a stress-relaxation
spectrum, which is most simply expressed as a
frequency-dependent viscosity increment, q(cu):

( )
1 t N()d

X~icuv+q~ ~ iruv+q~

d —l
The density of states has the form' N(q) —q

'
For linear chains, d, =1, and (6) then reduces to
the ordinary Rouse spectrum. '

In fact, one can go beyond (5) to construct a full
hydrodynamic theory of polymeric fractals in solu-
tion. Here I outline the scope of the theory and
present the main results; a fuller discussion will ap-
pear elsewhere. "

The treatment rests on the following scaling as-
sumption concerning the eigenfunctions, Q~(r),
and eigenvalues, q, of the Laplacian operator on
the fractal:

(p~(r)p~(r')) —M 'f(l r —r'It//g(q)), (7)

where r and r' label arbitrary points on the fractal,
f(0) =1, and ((q) is a length which scales as a

power of q.
This is similar, though not identical in form, to

the scaling assumptions discussed by Alexander
etal. ' By use of this assumption,

'3 and mode-
mode coupling, it is possible to extend the
effective-medium theory of Freed and Edwards, '

given originally to describe the frequency-
dependent viscosity of solutions of linear polymers,
to calculate (to within numerical factors) that of
solutions of arbitrary polymeric fractals. The results
of the formal theory involve all the equilibrium
correlation functions, (P~(r)pq(r')), which are
then rewritten in scaling form with use of (7).

At low concentrations, this treatment reduces to
a generalized Kirkwood-Riseman ' preaveraged
hydrodynamic theory, while at high concentration
the answers are modified (just as for linear
chains'~) by the effects of hydrodyanamic screen-
ing. The results, given below, therefore constitute
a generalization of the well-known' "Zimm-like"
and "Rouse-like" viscoelastic spectra (for linear
chains) to the case of arbitrary polymeric fractals.
These results are for monodisperse solutions, but
can easily be extended to allo~ discussion of, say, a
(polymeric) sol-gel system near, but below, its gel

928

point. Effective-medium theory should be applica-
ble whenever the interfractal correlations are not
themselves critical. '

The results of the theory for the frequency-
dependent viscosity increment, 57i (cu), of a number
density n of fractals of mass M(c= nM) and linear
size L in a solvent of viscosity q, are as follows:

(i) At low concentration, the motion of a given
fractal is controlled by long-range hydrodynamics

(with an interaction varying as q f ") and a
Zimm-like' spectrum is obtained,

—d /2 . 2d//d /. 2) '
lcm'g+ q

with a "hard-sphere" asymptote at low frequency,
5v) —qnL", and, at high o), i.e., qo) » L,

(d —d)/d
5q ((o) —q c (i ~7i)

(ii) At high concentration, hydrodynamic interac-
tions are screened, and effectively there is a
(concentration-dependent) local friction. This
results in a Rouse-like spectrum [cf. Eq. (6)],

d, —l~J-// // / ~ /-/
icoq+ (tI q

where the hydrodynamic screening length, (H, is
d —d

given by $Hf =C. The limiting forms are, as
2/(d- d

co ~ 0, gq —qc f)L, and, for geo && L,
2d/(df+ 2) (df d) r . x 2/(df+ 2)

57i (QJ i 7) C 't I Cd'rii

Because of Eqs. (1) and (2), these results may be
expressed in terms of either d, or df alone. The
crossover between Zimm-like and Rouse-like
behavior occurs when (H-L The above r.esults

apply for d values such that 2( d ( df+2. For
d & df+2, the hydrodynamic interaction is, in ef-
fect, short-range divergent and the Rouse spectrum
(6) arises at all concentrations. At d = df+ 2 there
are logarithmic corrections. The relations between
high- and low-frequency asymptotes are, in both di-

lute and concentrated cases, consistent with the
dynamical scaling hypothesis of de Gennes. ' How-

ever, the effective-medium treatment provides
more information about the structure of the relaxa-
tion spectra (for the ideal-phantom model) than can
be obtained by dynamical scaling alone.

Obviously, the neglect of excluded volume and
entanglement is a serious shortcoming of the above
analysis. In fact, the theory is easily extended to
cover "fractional" polymeric fractals, which have
an adjustable parameter that allows one to choose
df (independent of d, ) in order to simulate the ef-
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fects of excluded volume. However, the use of this
model for dynamics cannot easily be justified.

Unfortunately, also, it is not possible to incor-
porate entanglements into the theory at this level.
Nonetheless it is hoped that the above generaliza-
tions of the Rouse and Zimm effective-medium
dynamics might be useful in any future discussion
of the subject, just as the standard Rouse equation
is an essential ingredient in the reptation theories'
which describe the dynamics of linear chains in the
entangled regime.
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