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Intrinsic optical Bistability in Nonlinear Media
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A general class of optically bistable systems is described which operates without feedback
and is based on the intrinsic response of certain nonlinear media. A detailed analysis of one
such medium is presented which demonstrates that bistability may result in virtually all mac-
roscopic optical and material parameters.

-P-ACS numbers: 42.65.—k

Within the past decade optical bistability has
grown into one of the most active research areas in
nonlinear optics. ' The standard method for obtain-
ing a bistable optical device requires a nonlinear op-
tical interaction coupled with an intrinsic (optical)
or hybrid (electrical) feedback mechanism. In such
systems the nonlinear medium responds uniquely
to the impressed optical (and static) fields. Bistabil-
ity results from a multiplicity of values for the total
impressed field due to a nonunique feedback which
is usually proportional to the output field. Thus,
the system response is not uniquely specified in
terms of the input alone. Recently several systems
have been proposed and demonstrated which
we believe to be examples of a large class of bi-
stable devices which operate on an entirely different
basis. In this Letter we describe the general
mechanism by which these systems operate and also
provide a detailed analysis of the macroscopic ef-
fects due to one particularly simple model for such
media. Since these media may also display
numerous other nonlinear processes such as har-
monic generation, wave mixing, and self-focusing
effects, when intrinsic microscopic bistability occurs
a reformulation of the standard methods of analysis
for these other nonlinear processes is required.

When a nonlinear medium is excited by an opti-
cal field, the microscopic response of the medium
may be represented through one or more nonlinear
constitutive relations of the form

f(E, a, , b) =0,

where E represents the impressed fields and aI and
bI are vector and scalar microscopic response
parameters. The standard procedure in handling re-
lations of this form is to expand the macroscopic
parameters determined by aI, and b& in power series
in the fields, such as is done in the polarization ex-
pansion. These macroscopic parameters are then
used in Maxwell's equations to produce nonlinear

wave equations, whose solutions must be consistent
with Eqs. (1) and the relevant boundary condi-
tions. This procedure assumes that the optical
fields may be treated as independent variables.
However, under appropriate conditions this as-
sumption breaks down and relations (1) lead to a
multivalued response wherein two or more stable
solutions for a, and/or b, may exist over a range of
values for E. In such cases the nonlinear wave
equation must be solved in terms of the material
parameters as the independent variables, which are
then related to the optical fields through Eqs. (1).

Specific examples of the multivalued nonlinear
constitutive relations (1) have recently been
demonstrated for absorptive bistability due to
band-gap renormalization5 and to thermal variation
of the band gap in semiconductors, ' and in the
state of liquid crystals. Proposals for bistability due
to relativistic mass effects in the cyclotron reso-
nance of electrons, to the local-field correction
and to atomic correlation in small volumes4 have
also appeared. The essential (and somewhat unusu-
al) notion that the driving fields must be treated as
dependent on the material response was first real-
ized in a related context by Duffing in his work on
the classical anharmonic oscillator. " In order to ex-
plicate the general idea and to indicate the range of
macroscopic manifestation of intrinsic material bi-
stability on the optical driving fields we consider a
simple classical model for the complex nonlinear
polarization based on the Duffing oscillator which
has been previously employed in the analysis of bi-
stability in four-wave mixing. ' Here we describe
both absorptive and dispersive optical bistability
with only a single propagating wave.

Consider plane-wave propagation in the + z
direction from a linear medium (z ( 0) with index
nL into a nonlinear medium (z )0). For mathe-
matical convenience we restrict the discussion to
low molecular densities N, and the polarization of
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the nonlinear medium at the fundamental frequen-
cy r0 is taken to be P(z, t) =P(z)e '"'=Np(z, t)
—= Np(z)e '"' where p(z) is the amplitude of
molecular polarization and the driving field is
8f(z, t) =g'(z)e '"'. The differential form of the
constitutive relation is taken to be

+y' = —'7 V(x)+eE(z, t),m r) p, t)p
e Qt r)t

where m is the mass of the bound charges and
yr) p/r)t represents a linear loss. The one-
dimensional Duffing potential Vn= 2Kx + ~P x
is the simplest binding potential which leads to bi-
stable response. Substituting Vn(x) in Eq. (2)
leads directly to the solution to order P at the fun-
damental frequency,
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and an additional relation for the third harmonic,
which we ignore. Here b, —= Oiii N, cop = K/m,
y—= y'/m, and P= P'/me —Figure . 1(a) shows the
bistable response of (P ~

versus average flux Sbased
on Eq. (3).

The essential point in our analysis now lies in
treating p (or equivalently, P) as the independent
parameter in the wave equation. With Eq. (3) de-
fining 8'=g(z), the wave equation may now be
solved for p(z) —= A(z)exp(i[&(z)+kz]). The
slowly varying envelope solution is easily obtained:

S S
1 t

FIG. 1. (a) Polarization amplitude vs flux S for a
medium modeled by Eq. (2) with a Duffing poten«al Vn,
which leads to (b) a bistable effective index of refraction
n, rr, (c) a bistable phase relation dio (ip„, inset) between
the incident and transmitted (reflected) field, and (d) a
bistable reflected flux S~ obtained through interference
with a reference beam, all vs incident flux SI. Conditions
for bistable behavior are: (1) (i0( —ru2)/P (0, and (2)
(Oi) —~2)2& 3y20i2, where Qio is the microscopic reso-
nance frequency, a& is the field frequency, P =P'/me2 is
the coefficient of the quartic potential term, and y = y'/m
is the damping coefficient in Eq. (2). The switchup
intensity [1 2 in (a)] is S,„=—2m'c(cu( —co')3/
81m e2P

and

in[I'(z)/r, ]+ (-', Pa[r'(z) —r,']+—,",P'[r'(z) —r44]}[6 +y Oi ] = —nz,

cg (z) = +ii+ (1/2k) [Oi /c —k ]z —(I/yes) (hln[r(z)/rii]+ —', P[I' (z) —rii]),

(4)

(5)

where, for small loss, k and n satsify the usual (linear oscillator) conditions:

2 i/2
nok= —1+

6 +yes

and

n=y~ ~ [2kc (tt, +y ~ )] (7)

Here ro and po are the amplitude and phase of p (z) at z = 0 and ai~ [47r Nez/m ]' z is the plasma frequency of
the material.

Equations (4) and (5) determine p(z) and Eq. (3) then yields &(z) from which the energy flux in the non-
linear medium is obtained:

S= (cmzI z/8mez) ([nii+ (c$'/ai) ] [(b + —Prz)z+ yzr0z]+ —', Pycl I"},
where I"=—dI'/dz and ~ti' = dQ/dz are obtained from differentiation of Eqs. (4) and (5). The incident flux St
may now be related to P(z=0) through standard boundary conditions at z=0 by utilizing Eq. (3) for
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g'(z = 0). For normal incidence we obtain

Ss ——
m

{[yen(np =2nLnp+1)] + [(np +2nL+1)(6 +4pp)+o)~] ].
16/lo PlL e

The reflected flux S~ is obtained in a similar
fashion.

The relations between incident, transmitted, and
reflected flux are obtained by varying I 0 simultane-
ously in Sq, S, and S~. An effective index may be
defined in terms of the effective wavelength, or by
the relation between 8' and P. Figure 1(b) shows
the effective index n, ff at z = 0 versus incident flux.
The transmitted flux at z =0 is then determined
(for small loss) by S= [4n,rrnL/(ni + n, ff) ]Sf.
The phase difference between the incident field and
the polarization at z = 0 must also be expressed in
terms of I 0.'

(2npnL + np + 1)yo)
tanQp =

2 3 2 2'
(2npnr, + np + 1)(4+ P&Q) +tug

(10)

Figure 1(c) shows this phase difference versus in-

cident flux again obtained by varying I 0 simultane-
ously in $p and SI. The large phase jumps at
switching are characteristic of this type of polariza-
tion bistability. The inset in Fig. 1(c) shows the
reflected-field phase shift versus incident flux. As
expected, the reflected-field phase jump at switch-

ing is large only when nerf crosses (or approached)
llL .

As the transmitted field propagates in the non-
linear medium the field amplitude decays at dif-
ferent rates for the two stable branches according to
Eq. (4) (bistable absorptivity). An abrupt change
in the effective index n, rr(z) within the material
will occur if, at some z, the intensity drops below
the minimum value needed to maintain the upper
branch polarization leading to self-reflected waves.
Similar effects should also occur in nonplanar wave

propagation, such as self-enhanced, self-focusing,
and self-defocusing. The total phase shift of the
optical field over a length of the nonlinear medium
is determined by Eqs. (4) and (5) and also displays
two stable values, as does the transmitted field at
the nonlinear to linear output interface. The net ef-
fect of the amplitude and phase bistability at the in-

put and output interfaces plus the bistable phase
shift and absorption across the medium itself 1eads
to a net bistability in both the amplitude and phase
of the transmitted field across a slab of the non-
linear material. For physically reasonable non-
linearities the amplitude variations should be quite

small, but the phase variations are not. The phase
bistability may be converted into a flux bistability
througii any standard interference configuration.
As pointed out above, phase bistability upon reflec-
tion is substantial when n, ff varies in the neighbor-
hood of ni, and thus may also produce flux bistabil-
ity through interference with a reference beam.
This effect is shown in Fig. 1(d) for two different
low-intensity phase differences between the in-
terfering beams. The bistable loops displayed in
Figs. 1(b) and 1(d), which may also occur in other
macroscopic parameters, result from the fact that
each macroscopic parameter has a multivalued
response with the respect to the independent ma-
terial variable. However, the fundamental material
response curve [Fig. 1(a)] always maintains its
characteristic "Sshape".

It must be stressed that the standard procedures
of nonlinear optics which result in power series ex-
pansions in terms of the electric fields cannot be
used to describe this type of bistability. The poten-
tially important class of bistable interactions which
result from intrinsic material bistability must be
treated by procedures similar to the one outlined
above. Then the problem is reduced to the
discovery of appropriately nonlinear constitutive re-
lations.
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