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Thermal Response of Light Nuclei with a Realistic Effective Hamiltonian
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A realistic microscopic effective Hamiltonian (H,rr) is employed with the spherical finite-
temperature Hartree-Fock approximation to evaluate the thermodynamic properties of ' 0
and Ca. We scale H, ff to accommodate the A-dependent effects. We then adjust the Ham-
iltonian slightly to reproduce appropriate ground-state properties in the Hartree-Fock approx-
imation. We find the thermal response of these nuclei to be substantially greater than that
obtained with zero-range phenomenological forces.

PACS numbers: 21.60.Jz, 21.10.Dr, 21.10.Ft, 21.30.+y

f„={1+exp[(e, —p, )i T]] (3)

In this convention, temperature is given in ener-
gy units. The entropy is given by

S = —kx„[f„ln(f„)+(1—f„)ln(1 —f„)].

A realistic, microscopically derived, nuclear equa-
tion of state for finite nuclei would be of great utili-
ty for interpreting current experiments in heavy-ion
scattering and high-energy particle-nucleus col-
lisions. A necessary and major step towards obtain-
ing this equation of state involves solving for the
thermal properties of nuclei without external con-
straints. A theoretical framework to explore the
thermal properties of finite nuclei in the mean-field
approximation has been introduced by Bloch and di
Dominicis. This framework and extensions to in-
clude the effects of superconductivity2 have been
applied to nuclei with phenomenological Hamiltoni-
ans. %e present results for two representative nu-
clei, ' 0 and Ca, in the finite-temperature Har-
tree-Fock approximation (FTHF) employing realis-
tic effective Hamiltonians.

Given an effective Hamiltonian Heff for a chosen
model space, we minimize the free energy

F= (H, rr)
—TS,

assuming a mean-field approximation at fixed tem-
perature T, and obtain the FTHF equations. ' The
fully self-consistent solutions of these equations
provide the thermal properties of nuclei as a func-
tion of temperature.

The basic FTHF ingredients are defined as in the
T= 0 case but with a one-body operator

p = X„f,l~) (~ I, (2)

where lr ) is an eigenstate of the Hartree-Fock
Hamiltonian, corresponding to a single-particle
(s.p.) energy e„, and f„ is its occupation probability.
For fermion systems,

The neutron and proton chemical potentials are
determined separately in each iteration by requiring
that the sums of neutron and proton occupation
probabilities equal the desired numbers. The im-
plementation of this constraint distinguishes FTHF
treatment of finite systems from conventional ap-
plications to infinite systems. The equilibrium
solution of the above equations at each T provides
the entropy, excitation energy, free energy, neutron
and proton chemical potentials, s.p. energies, occu-
pation probabilities, and radial density distributions.
In order to evaluate further features of the nuclear
equation of state we must introduce constraints in
the variational method but this is deferred to a later
effort.

In principle, H,« is also T dependent but we
have ignored this complication in our initial applica-
tions. Our approach is based on the philosophy that
we will first develop the 8,« that would be ap-
propriate to the full diagonalization of the no-core
many-nucleon problem in the chosen finite model
space. %'e have previously applied moment
methods5 to obtain spectral properties from these
same effective no-core Hamiltonians. In brief, we
write H, ff as

Heff Trel+ Veff+ Vc (4)

where T„] is the relative kinetic energy operator
between pairs of nucleons, Vc is the Coulomb in-
teraction between protons, and V,« is the sum of
the Brueckner G matrix and the lowest-order folded
diagram (second order in G) acting between pairs
of nucleons in the model space. 5 The underlying
nucleon-nucleon interaction is the Reid soft-core
potential. For evaluating matrix elements of H, ff
we choose the harmonic-oscillator basis with
Ace=14 MeV and we select a sequence of model
spaces abbreviated as the 2-space (Os, Op, and 1s-Od
shells), the 3-space (Os, Op, ls-Od, and 1p-Of
shells), the 4-space (Os, Op, ls-Od, lp-Of, and 2s-
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ld-Og shells), and the 5-space (all shells through
the 2p-1f-Oh shell). This sequence of model spaces
permits us to estimate convergence properties of
physical quantities evaluated for many-nucleon sys-
tems.

In a recent application of these same Hamiltoni-
ans we have introduced scaling rules that account
for the major role of changing the harmonic-
oscillator constant for the basis space in order to ac-
commodate a change in nucleon number. With
these scaling procedures we need only calculate H, ff
for one representative value of the oscillator con-
stant. Briefly, we showed that matrix elements of
T„& and Vc were exactly proportional to hew and
(tee)'~2, respectively, while the matrix elements of
phenomenological effective interactions were ap-
proximately proportional to hen. It is then a simple
matter to apply this same Hamiltonian to both ' 0
and " Ca as we have done for these initial applica-
tions.

At T =0 we expect our results to be similar to
those of the Brueckner-Hartree-Fock (BHF) ap-
proximation. Small differences may be ascribed to
different choices for the Pauli operator and s.p.
spectra in the two-particle propagators of the G ma-
trix. Therefore, we expected and found the stand-
ard deficiencies in the T= 0 ground-state solution
for ' 0 and Ca in the spherical Hartree-Fock
(SHF) approximation. Our philosophy is to adjust
the H, ff in order to achieve agreement with mea-
sured ground-state properties in the SHF approxi-
mation before proceeding with the FTHF calcula-
tions. To do this we simply introduce overall fac-
tors X~ and A. 2 for the kinetic-energy and effective-
interaction terms, respectively, in Eq. (5). We then
adjust X~, X2, and hen simultaneously to achieve the
correct rms radius and binding energy for a given
nucleus within SHF for a fixed model space. The
best-fit values are found to vary smoothly with in-
creasing model-space size and increasing number of
nucleons. For example, in the 5-space results for
' 0 we obtian parameter values of 0.98, 1.30, and
9.71 MeV for X~, X2, and hen, respectively. For Ca

Ca in the 5-space the results are 0.98, 1 ~ 28, and
7.97 MeV.

We display in Fig. 1 the excitation energy of ' 0
vs T for the 3-, 4-, and 5-spaces. The simplicity of
this sequence of curves provides support for the
sensibility of the entire procedure we have adopted.
That is, the evaluation of a model-space-dependent
realistic effective Hamiltonian, its phenomenologi-
cal adjustment in the SHF approximation, and the
solution of the self-consistent FTHF equations pro-
duce a sequence of excitation energy curves which
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FIG. 1. Excitation energy E' as a function of nuclear
temperature T for ' 0 for different sizes of the model
space. The dotted line indicates the 3-space results while
the dashed and solid lines show the 4- and 5-space
(lowest six oscillator shells) results, respectively.

agree to successively higher temperatures as the
model-space sizes increase. Thus for low enough T
even a small model space will provide useful
results. We conclude that the 3-space results should
be useful for T~ 4.5 MeV, 4-space results for
T ~ 5.75 MeV, and 5-space results for T ~ 7 MeV
on the basis of the systematics shown in Fig. 1 and
on a number of other systematic features in our
results which we do not display here. From these
results for ' 0 and similar results for Ca we can
now extract with some confidence the parabolic
dependence of excitation energy on T. We find a
convenient parametrization E"(T)=0 for T~ To
and E'(T) =o.(T Ta)2 for T &—Tc. Then, with
TO=1 MeV we obtain o.=0.1852 for ' 0 and
o-=0.1043 for Ca, where A represents the ap-
propriate nucleon number. These results for Ca
follow the a ——0.1A results obtained by Sauer,
Chandra, and Mosel with use of phenomenological
Hamiltonians. However, our ' 0 results display
enhanced thermal sensitivity due to the larger
surface-to-volume ratio.

We display the FTHF results for the rms radii of
' 0 and Ca as a function of temperature in Fig. 2.
These results and those of Fig. 3 are obtained in the
5-space. For low temperatures, T~ 2 MeV in ' 0
and T~ 1 MeV in 4oCa, the radius exhibits almost
no thermal response because of the shell-closure ef-
fects. Then with increasing T, both nuclei undergo
a radial expansion proportional to T . The behavior
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FIG. 2. Root-mean-square radii as a function of tem-
perature Tfor ' 0 and Ca. —600
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of the rms radii with T can be parametrized by
r(T) =ra(1+ bT ), and we find that rc ——2.74 fm
and b=5,6x 10 MeV for ' 0 and ra=3.50 fm
and b =3.3x10—3 MeV for Ca. The thermal
response is far more substantial than the results ob-
tained with the zero-range phenomenological effec-
tive Hamiltonians. These earlier results obtained
essentially no change in the rms radii for T~ 5
MeV while our results yield a 14% increase and an
8% increase in the ' 0 and Ca radii, respectively,
at T=S MeV.

In Fig. 3 we present the neutron s.p. energies for
Ca as a function of T. At T=O we obtain self-
consistent s.p. energies which are in the order ex-
pected from a phenomenological shell model and
the results are reminiscent of the earlier BHF s.p.
energies. Recall that the effective Hamiltonian has
no one-body component so that the appearance of a
sensible single-particle spectrum at T= 0 provides
further justification for this approach to obtain ther-
mal properties. Note especially that with increasing
T the spin-orbit splitting decreases fast enough to
actually preserve the shell gaps to higher tempera-
tures than might have otherwise been expected.
Here also we find more substantial changes with T
than reported for phenomenological Hamiltonians.

We conclude that our approach to evaluating the
thermal properties of nuclei satisfies smoothness
criteria as a function of model-space size and leads
to predictions of thermal properties for finite nuclei

TEMPERATURE (MeV)
FIG. 3. Single-particle neutron states as a function of

nuclear temperature T for 4OCa in the 5-space. The unla-
beled levels are approximately consistent with the expect-
ed shell-model ordering at T= 0 MeV.

which differ substantially from results based on
phenomenological Hamiltonians. The realistic mi-
croscopic effective Hamiltonians in the mean-field
approach yield predictions for substantially greater
thermal response of light nuclei.
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