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Phase Shifts of the Skyrmion Breathing Mode
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Phase shifts for the skyrmion breathing mode are calculated and indications of a resonance
in this channel are found. We identify this resonance with the N(1440) and 5(1600).
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The identification of the solitons of the Skyrme
model' with baryons in the large-N limit of QCD2
has enjoyed some success in describing the nucleon
and delta. One is naturally led to question just
how far the Skyrme effective Lagrangian can be
pushed; in particular, whether it can be used to
predict the properties of other baryon resonances.
To study this question we look at the simplest vi-
brational excitation of the skyrmion, the breathing
mode. This excitation has been studied by a
number of authors, all of whom use essentially
variational methods. Because there is no variational
principle for finding the masses of unstable reso-
nances, we prefer to use a different method. We
expand the Lagrangian to leading order in the,

semiclassical approximation to find the phase shifts
of the vibrational modes. The energy at which the
phase shift passes through 90' is then identified
with the mass of a resonance.

We realize that this procedure is sensitive to the
form of the effective Lagrangian we use. Because
resonances occur at fairly large pion energies, one
could include terms involving arbitrary numbers of
derivatives of the pion field with arbitrary coeffi-
cients, thereby obtaining whatever phase shifts are
desired. There is, however, the possibility that a
simple effective Lagrangian could reproduce the
spectrum of baryon resonances, and it is this possi-
bility that we wish to investigate.

We use the Lagrangian

L = —,', F2tr(t)„Ur)" U )+ ,', e 2—tr[[(t)„U)U, (B„U)U ]2)+ —,
' m2F2 (trU —2),

where Uis an SU(2) matrix and in the large-N limit F2 and 1/e2 are both of order N.
To find the breathing mode we let

U=exp[iF(r)x r +ie5F(r, t)x 7 ],

where F is the classical Skyrme solution and the ~; are the usual Pauli matrices. Note that these fluctuations
in F about the classical solution are orthogonal to the collective rotations and translations to leading order.
Furthermore, because the classical solution is invariant under rotations in spin plus isospin the vibrational
modes can be divided into multiplets of J+ I. This mode transforms as a singlet and is orthogonal to the
higher vibrational multiplets. So use of this Ansatz guarantees that we find fluctuations that diagonalize the
small-oscillation Hamiltonian. We expand the Lagrangian up to second order in 8F; high powers of 5F are
suppressed by powers of N ' . Note that this procedure is simply the usual semiclassical approximation
with 1/N the expansion parameter instead of II. We ignore the rotational degrees of freedom since they are
1/N effects. The equation of motion that results is

0= ( 4
r2+ 2s2)5F"+ ( —,

' r+ 4scF') 5F'+ [ 4
co2r2+ 2s2co2 ——,

' c —s + 4scF" + 2(c2 —s2) (F') 2

+ 2(c' —s') s'/r' 4s'c'/r' ' /3'r'c]5F, — — —
~here s = sinF, c = cosF, P = m /eF, and we have scaled r by eF and given 5F the time dependence—ieF cot1F

We solve this equation subject to the boundary conditions 5F= 0 at r = 0 and r = ~ in order to ensure that
the baryon number is unchanged. Near the origin 5F—r, while as r oo, 5F aj, x (kr) + bnt(kr), where
jt and nt are the usual spherical Bessel functions of order 1 and k = (co2 —m„) ' . We solve the equation by

1984 The American Physical Society 889



VOLUME 53, NUMBER 9 PHYSICAL REVIEW LETTERS 27 AUGUST 1984

180 i i / i

(
i i i i

180

(a) (b)—

90— 90—

0
0

I I I I 0
1 0

I I I I
i

I I I I

0
0

I I I I

i
I I I I

0
1 0

90— 90—

0
0 .5

0 I I I I I I i t I

1 0 .5

FIG. 1. Phase shift 5 (in degrees) vs pion momentum
k (in units of eF ) for (a) P = m /eF„=O, (b) P =0.263,
(c) P=0.75, and (d) P=1.0.
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FIG. 2. Cross section a (in arbitrary units) vs pion
momentum k (in units of eF„) for (a) p= m /eF =0,
(b) P = 0.263, and (c) P = 0.75.

integrating numerically from the origin out to
r =50 for p=0, r =25 for p=0.263, r =15 for
p = 0.75, and r = 15 for p= 1.0. At those values of
r, F(r) is negligible and 5F(r) approaches its
asymptotic form. We then fit 5I' for r large to
a (k)jt(kr) + 5 (k) n t(kr) and find the phase shift

5(k) =tan t[ — b(k) /a(k)1.

The results are plotted in Fig. 1 for all four values
of p. Note that for p=0.263 we have m =139
MeV if we take the values of e and I' used in Ref.
5 to fit the nucleon and delta masses. We include
the other values for p because this fit is not neces-
sarily the best overall when resonances are included
and we wish to investigate at what value of p a
bound state forms.

As we can see from the graphs, for p = 0 the
phase shift rises rapidly from zero around k=0.3,
levels off at about 85', and then slowly declines as k
increases. For p = 0.263, the phase shift rises rapid-
ly around k = 0.35 and reaches a maximum value of
91'. For p =0.75 the phase shift rises quite rapidly
through 90'. For these values of p, 5(0) =0, and
so, by Levinson's theorem, there is no bound state.
For p = 1.0, however, the phase shift starts at 180'
and gradually declines, indicating that for very mas-
sive pions a bound state forms in this channel. In
the discussion that follows, we concentrate on
p = 0.263 since that value corresponds to the physi-
cal pion mass. In this case 5 passes through 90',
but it does not look like a classical narrow reso-

nance, in which 5 rises rapidly through 90' and lev-
els off at about 180'. Nevertheless, if we take 5's
passing through 90' as the signal of a resonance,
one occurs at co = 0.63' . Using the values for e
and I' given in Ref. 5, we expect a resonance at a
pion energy of 330 MeV. Because this excitation
has the same symmetries as the ground-state skyr-
mion and we are neglecting rotational effects, we
identify this resonance with a nucleon breathing
mode at 1270 MeV and a 5 breathing mode at 1560
MeV. Experimentally we have the Roper reso-
nance at about 1440 MeV and a b at 1600.

We should point out that because the phase shift
does not rise rapidly through 90', the identification
of the mass of the resonance is somewhat ambigu-
ous. The contribution of this channel to the cross
section is proportional to sin 5/k, which is plotted
in Fig. 2 for p = 0, 0.263, and 0.75. If we take the
resonance mass to be the energy at which the cross
section peaks, using the values of e and F„ofRefs.
3 and 5, we have a nucleon at about 1200 MeV and
a 5 at about 1500 for both p =0 and p = 0.263. The
width of the peak at half maximum is —100—200
MeV. For p=0.75 the resonance becomes quite
sharp.

The masses we obtain are rather too small, but
this is not unexpected since they scale with I'„
which is also too small in the fits to the nucleon and
b, of Refs. 3 and 5. (The variational calculations of
Ref. 6 also give too small a mass splitting. ) More
disturbing is the failure of the phase shift to rise
above 91' for m = 139 MeV since the experimen-
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tal phase shifts for the P» resonance rise quite rap-
idly up to about 180'. This, however, may be an ar-
tifact of the low value of p forced on us by the fit of
Ref. S. When other resonances are found, we may
find that a higher value of p gives the best overall
fit, which would certainly improve this resonance.
Note, however, that one cannot allow p to become
too large, since eventually a stable bound state
forms. Our choice of Lagrangian is also somewhat
arbitrary, and more realistic models of pion physics,
as for instance introduction of the vector mesons, 7

may improve matters. We are investigating this
possibility as well as looking for resonances in other
channels.
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