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We argue that microcanonical Monte Carlo techniques can provide direct information on
the values of renormalized coupling constants in numerical renormalization-group studies.
The method is tested on SU(2) lattice gauge theory with fundamental arid adjoint couplings
and on the two-dimensional O(3) Heisenberg model.
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In this Letter we present some results obtained
on a new method of determining renormalized cou-
pling constants in a Monte Carlo renormalization-
group (RG) calculation. The method is quite gen-
eral in that it can be applied to any model with (at
least in principle) any number of coupling con-
stants. The Monte Carlo RG combines the ideas of
the block-spin RG and Monte Carlo simulations. '

Typically, one creates an ensemble of configura-
tions with a weight proportional to some initial
Hamiltonian, then blocks the spins according to
some RG rule. The new ensemble of block-spin
configurations thus obtained would be distributed
according to the new renormalized Hamiltonian.
Then, once the renormalized Hamiltonian is expli-
citly determined, one can study the coupling-
constant flow under rescaling, find critical ex-
ponents near a RG fixed point, and determine the P
function of the theory in a regime of coupling-
constant space that is not accessible to any kind of
perturbative treatment. The last step above (find-
ing the renormalized Hamiltonian) has traditionally
been the most problematic one, involving compli-
cated matching procedures. Recently new methods
to find renormalized couplings have been
developed. 2 However, they are very different from
what is proposed here.

Our method of finding renormalized couplings is
simple: It is a basic feature of a simulation of the
microcanonical ensemble that the coupling con-
stants of a given Hamiltonian do not serve as input
but are rather a result of the computation. The
strategy then is to simulate some Hamiltonian, per-
form the blocking, and use the block-spin config-
uration thus obtained as an input for a microcanoni-
cal simulation. The result of the latter simulation
will be the values of the renormalized coupling con-
stants. In the implementation of the microcanoni-

In a RG calculation several couplings must be
determined simultaneously. This can be done in
the following way: Suppose our system of interest
is governed by the canonical partition function

Z = /&exp[ —g,P;Ht(C) ]. . (4)

Then the appropriate microcanonical partition func-
tion is

ZMC= $ ggg[H;(C) + ED —E(') ],
(ED &0) C i~l

This corresponds to having one demon carry as
many sacks as there are coupling constants —each
one labeled by the index i in (5). (ED therefore is
the energy in the ith sack; Eo is the total energy

cal ensemble in Ref. 4, one simulates the "partition
function"

Z, = g,,g,g [H(C) —E, —E,].
Here Eo is the total energy which is held constant
during the simulation; ED refers to the energy of an
extra degree of freedom (the "demon") which
hops through the lattice and attempts to update the
variables of the problem. The sum in (1) is over
configurations and properly constrained demon en-
ergies. Standard statistical mechanical arguments
suggest that for a large system the demon's energy
will be distributed according to Boltzmann's law:

P(ED)~ e

Hence if, for example, ED is restricted to ED ) 0,
the inverse temperature P ("coupling constant") is
given by
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corresponding to H;. ) If some of the coupling con-
stants can be negative, one must constrain the
demon energy to lie in some finite interval
[ —EM, EM]. In this case one obtains instead of (6)
the invertible relation

TABLE I. Determination of fundamental and adjoint
couplings in SU(2) lattice gauge theory.

Monte Carlo

(2, —0.5)
(3,1)
(0.5,0.5)

1.999 + 0.003
3.08 + 0.03

0.495 + 0.002

—0.486 + 0.004
0.99 + 0.02

0.501 + 0.002

(7)(ED) = I/p; —EM/tanhp;EM.

As a single demon carries only a small fraction of
the system energy, its initial value is unimportant.
This is in contrast to a conventional molecular-
dynamics version of microcanonical simulation,
wherein each degree of freedom has an independent conjugate momentum. Furthermore, a molecular-
dynamics approach would not allow simultaneous determination of several couplings.

Relations (6) and (7) have finite-volume corrections of the forms

(E)„=(E) + (2CV) '((E) (E2) —(Es) ) + O((2CV) '). (8)

They are especially small near a critical point where the specific heat C of the system becomes large. Furth-
ermore, they are also small at weak coupling or large P [O(1/P ) ]. The inherent statistical error in a deter-
mination of P; via (3) and (6) is of order O(P;) per measurement of ED. This statistical error can be made
arbitrarily small by performing sufficiently long runs.

We have studied the method on different models: SU(2) gauge theory with a mixed fundamental-adjoint
action6 and the O(3) Heisenberg model in two dimensions. For the gauge case we merely present the deter-
mination of (PF, Pz) on an 8 lattice at three different values of the couplings. We first prepare a thermal-
ized configuration via conventional Monte Carlo methods. Then starting from this configuration we per-
formed 300 microcanonical iterations with the initial demon energies set to ED =0. The central values and
errors shown in Table I refer to this one particular configuration. A better procedure is to prepare a config-
uration with an energy equal to the average energy of a number of initial Monte Carlo configurations. This
procedure was followed in the O(3) case. We studied the following O(3)-symmetric three-coupling Hamil-

tonian

X/3;H;= ptx„„(1—S„S„+„)+p2X„(2—S„S„+„+y—S„S„+„y)+Igsg„„(l—S„S„~2„).(9)

TABLE II. Expectation values of internal energies of block spins and renormalized
coupling constants. The errors are the statistical errors obtained from individual Monte
Carlo runs.

Size, P
Block
size E2 E3

128 x 128,
pi = 1.28

64x 64,
p] = 1.064

0.4907 + 0.0001
0.5046 + 0.0001
0.6095 + 0.0008
0.7557 + 0,0017
0.5906 .+ 0.0001
0.6435 + 0.0002
0.7622 + 0.0005

0.6159 + 0.0001
0.6490 + 0.0002
0.7712 + 0.0006
0.9036 + 0.0036
0.7318 + 0.0001
0.7950 + 0.0002
0.9031 + 0.0005

0.6913 + 0.0001
0.7668 + 0.0005
0.8832 + 0.0009
0.9748 + 0.0041
0.8049 + 0.0001
0.8946 + 0.0004
0.9741 + 0.0013

128x 8,
pi = 1.28

64x 64,
P I = 1.064

1.285 + 0.008
1.486 + 0.017
1.232 + 0.010
0.758 + 0.007
1.060 + 0.007
1.041 + 0.009
0.727 + 0.005

0.006 + 0.005
0.002 + 0.004

—0.019 + 0.005
—0.020 + 0.006
—0.001+0.007

0.019 + 0.010
—0.002 + 0.003

0.008 + 0.004
—0.200 + 0.012
—0.196 + 0.012
—0.111 + 0.004

0.002 + 0.009
—0.123 + 0.008
—0.099 + 0.009
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FIG. 1. After three blockings, the trajectory starting
from a 128&128 lattice (squares) reaches the twice-
blocked trajectory starting from a 64 && 64 lattice (circles).

Here n is a lattice site and p, a unit vector in the lat-
tice. We determined the RG flows of coupling con-
stants starting from the two points (1.28,0,0) and
(1.064,0,0). In the work of Shenker and Tobo-
chnik7 these two points were determined to have
correlation lengths differing by a factor of 2. Our
results are summarized in Table II. We first
evaluated the three internal energies of the block
spins E,= (0;) us—ing ordinary Monte Carlo
methods. At pt = 1.28 we used a 128& 128 lattice
and averaged over 2400 iterations. At Pt = 1.064 a
64X64 lattice was used and 12000 iterations per-
formed. Then a new configuration having the aver-
aged blocked internal energies E; was prepared.
This configuration was used as a start for a micro-
canonical simulation with all the demon energies
restricted to lie in the interval [ —1, 1]. To mini-

mize finite-size effects the lattice size of the micro-
canonical runs was always that of the blocked lat-
tice. The number of microcanonical iterations we
performed was 8000X (16/L), where I. is the
linear size of the blocked lattice. From our data it is
clear that the coupling constants of the two initial
lattices approach each other after, respectively,
three and two blockings (Fig. 1). This indicates
that the initial couplings do indeed correspond to
Hamiltonians with correlation length g and g/2,
thus confirming the results of Ref. 7.

To summarize, we have proposed a new numeri-
cal method to evaluate renormalized coupling con-
stants. Its main advantage is that it is fast and ex-
tremely easy to implement.
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