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The finite-temperature excitation spectrum of the classical Toda lattice is obtained by nu-
merical solution of the Bethe Ansatz. Bethe-Ansatz thermodynamics agrees exactly with
known transfer-integral results. A soliton-phonon phenomenology is developed and its vali-

dity assessed with the Bethe-Ansatz spectrum as an exact standard. The phenomenology's in-
trinsic limitations become evident in a transition region, where a distinction between phonon
and (nontopological) soliton is impossible.

PACS numbers: 05.50.+q, 63.70.+h

Integrable systems are particularly intriguing
from the viewpoint of classical statistical mechanics.
They provide a testing ground for the conjecture'
that the thermodynamics of a class of nonlinear sys-
tems [calculable by transfer integral (TI) methods]
can be exactly described in terms of a phenomenol-
ogy of ideal gases of solitons and phonons, which
interact in a manner reducing available phase
space. From a practical point of view we would
like to know the dispersion relation and the occupa-
tion numbers of elementary excitations in order to
calculate dynamical structure factors relevant to the
observation of solitons in real systems.

Whereas the thermodynamic contributions of
harmonic phonons and topological (kink) solitons
have been identified, an unequivocal interpretation
of anharmonic terms (and hence an exact recon-
struction of the total free energy) has so far not
been possible, either within classical phenomenolo-
gy2 3 or via the Bethe Ansatz (BA).s The exact role
of nontopological (breather or pulse) solitons
within classical statistical mechanics remains some-
what elusive. It thus seems desirable to circumvent
both the necessity of a cutoff and the transition to
the classical limit5 by working out the BA for the
simplest discrete integrable system, the Toda lat-
tice, 6 in a form designed for the direct extraction of
classical information, i.e., independent of the cou-
pling constant.

In this Letter, I derive the finite-temperature ex-
citation spectrum of the Toda lattice using the sem-
iclassical BA and establish agreeement (within nu-
merical accuracy) between the BA and TI thermo-
dynamics. Furthermore, I develop an improved
classical soliton-phonon phenomenology and dis-
cuss its validity. It is shown that the exact (BA) ex-
citation spectrum can be described over large re-
gions of phase space using the concepts of thermal-
ly renormalized solitons and phonons. The transi-
tion regime (corresponding to "long-wavelength"
excitations), while in fact (BA) smooth, exhibits an

where y„and p„represent displacement and
momentum of the n th atom, V (r) = (a /b )
&& [exp( —br) +br —I], and m is the atomic mass.
The free energy of (1) was found to be6

f=fo+f' = —T ln( T/g) —T /12+. . . , (2)

for T « I, g =ttoo/(a/b), coo = (ab/m) 'i . Ener-
gies are measured in units of a/b, lengths in units
of b '. Sutherland pointed out the equivalence of
V(r) to the sinh r potential in the limit of low
densities do (( 1 and succeeded in calculating the
zero temperature excitation spectrum (solitons,
phonons) within the BA framework in the limit

g 0. In fact all asymptotic phase shifts arising
within the inverse scattering theory' of the Toda
lattice (and hence the complete dynamical informa-
tion about interactions between solitions and or pho-
nons) can be derived" from the sinh 2r potential.
The next step is to follow Yang and Yang' in their
finite- T formulation of the BA. They define admis-
sible values of the single-particle momenta and
designate the density of occupied and omitted k
values by p(k) and pn(k), respectively. The quasi-
particle energies and momenta are then given by

k
e(k) = —T In(p/pp, ) and h (k) = f dk'p~(k'), re-
spectively.

In order to make direct contact to classical "soli-
ton phenomenologies" I take the classical limit of
the relevant equations of Ref. 12 prior to rather than
after solving them (semiclassical BA). This mani-
festly classical approach defines a nonsingular part

apparent singularity within the phenomenological
framework. This feature reveals the latter's intrinsic
limitations and should be generic to nonlinear sys-
tems supporting nontopological solitons and acous-
tic phonons.

The system is defined by the Toda Hamiltonian

N p20= X
" + V(y„—y„ t),

2m
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of e, e = a+ fp, which then satisfies the integral equation

(4)

x(x)=2x —/)(2/x) J dx'K(x —x')exp[ —Pi(x')]. (3)

with P, =1+f'= p,
—1/dp fp, —the nonsingular part of the chemical potential, determined by 1=7r

x j dx exp[ —Pe(x)] for conditions of vanishing external pressure; in (3) the kernel E(x) =In~2x~,
P = I/ T, and the momenta are in units of the T= 0 Fermi momentum kF = (8/g) exp( ——,dp). The result of
the numerical solution of (3) for T = —, is shown in Fig. 1. Details of the iteration procedure will be pub-

lished elsewhere.
In order to write the second Yang and Yang' equation we have used the transformation p(x)

= (2P/n ) (1 —d/dp) exp( —Pe) r (x), which in the limit g 0 yields the linear integral equation

r( x)=)+(2K/x) J dx'IC(x —x')exp( —Px(x')Ir(x'),

solvable either by iteration or by discretization and
matrix inversion; the relevant therm odynamical
quantity here is thermal expansion. The normaliza-
tion condition f dxp(x) =d leads to /5, l =d
—dp

' =7r T/2I, where I= fdxexp( Pe)—r The.

agreement between Toda's direct classical (TI)
results6 and our integrated quantities (Table I)
presents conclusive evidence that the semiclassical
BA and, in particular, Sutherland's kernels remain
valid for finite temperatures and can be relied upon
to yield the correct excitation spectrum.

The form of the excitation spectrum derived by
Eqs. (3) and (4) is shown in Fig. 1 and 2 for p = 2.
There is no trace of a singularity in the quasiparticle
energies and only a broad maximum of the particle
density at k =0.85 kF. Excitations are clearly of
particle character since the ratio of occupied to
omitted k values is of order h for all k, unlike the
case for T=O with its well defined Fermi sea. It
follows that an exact "reconstruction of the statis-
tics" of classical soliton bearing systems' can be
achieved trivially' for any finite T in terms of the

4.0

numerical solution of (3) and (4) . The number of
particles and the entropy contribution from any interval
dk coincide with those of a classical gas of noninteract
ing particles with energies e and rnomenta h

(2mpt, = dh/dk) in an interval dh/2n

However self-contained the above treatment may
be, it seems hard to believe that the system can lose
all memory of its solitons and phonons even at a re-
latively low temperature. It is therefore of consid-
erable interest to relate the exact results derived
above with a consistent soliton/phonon phenom-
enology. 7 This is a point that has led to some con-
troversies over the last few years, in particular with
reference to "breathers" of the sine-Gordon equa-
tion.

To lowest order in the temperature, we may view
the energies of the quasiparticles with ~k~ ( k„
as (minus) the free energy of the corresponding
phonon mode, i.e. , ap(k) = —T In(2Pg sin8),
k/kF = cos0; the Boltzmann factor exp(Pe)
describes the classical limit of the Bose-Einstein dis-
tribution for the population of a particular phonon
mode. For ~k~ ) kF the result of Ref. 8 holds,

p(et)(=)sinh2$ —2(t), k/kF = cosh(t), corresponding
to the energy of a free soliton (Fig. 1). Corrections

3.0-

1.0-

I
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I

1.0
I
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TABLE I. Classical thermodynamics from Eqs. (3)
and (4). The free energy 1+f' and the thermal expan-
sion are given for two different temperatures; the exact
results (Ref. 6) are in parentheses. The numerical
results involve 17 and 25 iterations of (3) and (4),
respectively. The integrations were performed for 25
points in the interval 0~ x ~ 2.2 ( T = 0.5) and
0 ~ x ~ 3 ( T = 2); note that both e and p are even func-

tions of x.

FIG. 1. The quasiparticle energy e as a function of
k/kF, for T=0.5. The solid line is the result of the nu-

merical solution, the dashed line describes e()(k), and the
points are thermally renormalized energies.

0.5
2.0

I+ f'

0.9797 (0.9793)
0.6941 (0.6931)

0.270 (0.270)
1.270 (1.270)
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due to finite T can be included either via the phase
shifts of the purely classical theory or via the BA at
T =0. Both approaches lead to the same result if
correctly interpreted. We may describe either the
rearrangement that takes place in p(k) for k/kF & 1

as a particle is created at q outside the Fermi sea
(phonon phase shift due to a soliton) or the change
in p„(k) for k/k„& 1 due to the creation of a hole
at q inside the Fermi sea (soliton spatial shift due to
a phonon3) by the same function b, (k, q)." Similar
expressions govern the rearrangement of particles
within the Fermi sea due to the excitation of a hole
(phonon-phonon interaction) and the rearrange-
ment of holes outside due to the excitement of a
particle (soliton-soliton interaction). Whereas the
latter might be neglected at low temperatures (low
soliton densities), the former, although of order g,
will lead to finite effects in the presence of a ther-
mal ensemble, i.e., 0 (T/g) phonons.

As the temperature rises the following picture
emerges: (a) There is an extra entropy produced
inside the Fermi sea by the "backflow" associated
with the excitation of each hole. This leads to a
change in the quasiparticle energy

(Se(k) = (T/4) [1—(k/k )'] (S)

fpa
= fo T'/8. — (6)

(b) The creation of a soliton consists of a particle
at k ) kF plus the backflow of the Fermi sea; at fin-
ite T the latter produces an additional entropy,
which may be interpreted as a change in the free
energy needed to create a solition (thermal renor-
malization of the soliton mass2). It amounts to
b e(k) = —T ln(2Pg sinhpe ~) and describes cor-
rectly deviations from ea for k/k„& 1.1 (Fig. 1).
Furthermore, the appearance of the singular term
—fo in e(k) for all k now guarantees correct
phase-space counting —and, ultimately, classical
statistics.

(c) At this stage we fill up the system with soli-
tons until thermal equilibrium has been attained.

The beginnings of an asymptotic expansion in I/P
become apparent. Agreement is excellent for
k « kF (cf. Fig. 1) but the correction term (5) be-
comes singular as k kF. In the region of its vali-
dity, however, (5) is equivalent to renormalization
of kF to a value k = (1 —T/4) kF, for the case of
Fig. 2 this yields k /k„= 0.875, remarkably close to
the position of the broad maximum of p. If we
adopt this new "Fermi momentum" and assume
that no particles have been lost from ~k~ & k we

may compute the free energy of the phonon sec-
tor".

0.3—
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FIG. 2. The density of particles vs k/kF for T=O.S.
The square-root singularity of T =0 has given way to a
broad maximum.

The free energy of the soliton sector will now be
given by

f, = —TJ ~

dkp„(k) exp( —(( (k)(,

with an important proviso: As the phonon gas
evolves by the successive buildup of holes, the den-
sity of holes outside the Fermi sea—and thus the
available phase space for solitons —is reduced. The
corrected density of states

pa (k) = (d/2n )P [ I —( T/4(t ) sinh 2Q], (8)

should again be understood as the beginning of an
asymptotic expansion in I/p [cf. (5) above].
Nevertheless, if used in (7) [cf. our discussion fol-
lowing (S)], it reveals a remarkable degree of self-
consistency. Both leading terms in (7), of order
T ' and T, respectively, vanish as a result of ex-
act cancellations, leaving (6) as the simplest
phenornenological reconstruction of the total free
energy.

The heuristic soliton-phonon scheme I have
presented is successful in a quantitative sense in in-

terpreting the exact excitation spectrum of an ex-
emplary classical nonlinear system away from the
transition region. Its weakness lies in its structure
as an asymptotic series in 1/P and the concomitant
overemphasis on a singularity that does not exist
for T ) 0. The analogy with the Bethe-Ansatz
description is in fact deeper. Equations (3) and (4)
cannot be solved by asymptotic methods either.
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and encouragement during the course of this work
and R. O. Jones for his comments on the
manuscript.
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