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Phase Transitions in Lattice-Gas Models Far from Equilibrium
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A lattice-gas model with particle-conserving hopping dynamics on a periodic lattice is ex-
posed to a strong external field along one of the principal axes. The resulting stationary state
is determined exactly in the limit of infinite ratio of jump rates in and perpendicular to the
field direction. In this state the gas-liquid phase transition is of mean-field type. For not too
strong coupling in the direction orthogonal to the field, several other phase transitions occur.
All of these have mean-field character as well ~

PACS numbers: 64.60.Cn, 05.70.Fh, 66.30.Hs, 82.20.Mj

Recently Katz, Lebowitz, and Spohn' studied the
gas-liquid phase transition of a lattice-gas model in
a stationary nonequilibrium state. This state is pro-
duced by a constant uniform field along one of the
principal directions of a periodic square lattice,
which causes the flow of a steady current. Monte
Carlo simulations show that for attractive interac-
tions between the particles the critical temperature
is raised above its equilibrium value, whereas for
repulsive interactions it is lowered. A theoretical
description of the phase transition in the nonequili-
brium state has been thus far lacking.

Here we describe a slightly different version of
this model, for which the stationary states can be
found exactly. The gas-liquid phase transition turns
out to be of mean-field type, as seems to be typical
for nonequilibrium phase transitions. It is our
feeling that this model can serve as a prototype for
phase transitions modified by the presence of sta-
tionary currents and as a testing ground for general
theories describing such phase transitions. The
model is described by configurations (q}= {q»,
. . . , qtvht}, with q;, either 0 or 1, defined on an
N XM square lattice with periodic boundary condi-
tions. The energy in equilibrium is given by

E({~})
N M

Jh llj 1I J+ 1 Jll0/J ll+ t Ji-1j-1
with qN+1i=q, i and q, M+1=q;1. As in Ref. 1 we
define a stochastic dynamics by allowing the parti-
cles to jump to unoccupied neighboring sites. In
addition we restrict ourselves to the case that an in-
finite field is turned on in the vertical direction.
Then the jump rates are defined as follows: The
rate for a jump from (k,j) to (i+ l,j) is r~~, that
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for a jump in the opposite direction vanishes, and
the rates for jumps in the horizontal direction are
given as

r((„}-{ '})
=r~ exp —,

' p[E((v)}) E((q'})], —(2)

where q and q' must be connected through a jump
from a site (ij) to (ij + 1). Note that these jump
rates differ from the ones adopted in Ref. 1, but do
satisfy the local detailed balance conditions imposed
there. Next we pass to the limit I'~~jr~ ~, corre-
sponding to a strong enhancement of the jump rate
in the field direction. In this limit the distribution
of particles in each single column relaxes on the
time scale I {{ to the stationary distribution deter-
mined by the vertical jump process and the number
of particles, say n, in the column. (Note that the
vertical jump process is completely uninfluenced by
the contents of the other columns. ) This distribu-
tion simply gives equal ~eight to all configurations
with n particles, since the numbers of configura-
tions from which a given configuration can be
gained and to which it can be lost are always equal
to each other. (To be specific: both equal the
number of clusters in the given configuration. )

On the time scale I ~ the stationary distribution
of the columns is disturbed by horizontal jumps.
Between two consecutive jumps involving the same
column, however, the column returns rapidly to a
stationary condition;- hence the horizontal jumps
can be considered to occur among columns in a sta-
tionary single-column state. Hence on this time
scale microscopic states of the full lattice can be
specified by the occupation numbers ni of all the
columns.

For the probabilities P((n},t) =P(n~, . . . , nM, t)
to find, at time t, n, particles in column j, with
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g=l, . . . , M, there is a master equation of the form

P—((n), t) = X, [I ((n'} (n})P({n'},t) —I'((n) (n'))P((n}, t)].
Bt

(3)

To calculate the jump rates, consider a situation where the particle numbers in four consecutive columns are

p, n, m, and q, respectively. Then the rate for a jump from the second to the third column is
1 1

I' (n, m n —l, m +1)=I in —x+ x —x + x(N —m) q (N —q) ~
P

~
N —p

ue N N N

m(m —I), 2m(N-m —I) (N-m —1)(N —m —2)x y + +
(N —1) (N —2) (N —1)(N —2) (N —1)(N —2)

t t

X~ (n —1) (n —2) 2(n —1) (N —n) (N —n) (N —n —1)
y + + y', (4)

(N —1)(N —2) (N —1)(N —2) (N —1)(N —2)

with x=exp(PJt, ) and y =exp(PJ„). In this equation the factor n appears because each particle in the
second column may jump. The factor (N —m)/N results from the restriction that the site to which the jump
occurs must be empty. Then, for example, the event in which the jumping particle adjoins an empty site in

the first column and two occupied sites in the second column, while the receiving site neighbors two empty
sites in the third column and an occupied one in the fourth column, has a probability

(N —p) (n —1) (n —2) (N —m —1) (N —m —2) q

N (N —1)(N —2) (N —1) (N —2) N

According to (2) the jump rate in this configuration equals I'i exp[p(2Jt, —4J„)]. Collecting the contribu-
tions from all different local configurations at the instant of the jump one recovers (4). Notice the particle-
hole symmetry of (4): The I"s are invariant under the transformation n; N n; Stat.io—nary solutions to

master equations generally are hard to find, unless they satisfy a detailed balance condition. Hence one may

try and look for stationary solutions to (3) by satisfying the detailed balance condition Po((n))/
Po((n'}) =I'((n') (n})/I'((n) {n')). This can be done exactly in the case Jt, =0 only. If one assumes
the system to be weakly coupled to a particle reservoir, the stationary solution for this case assumes the form

N
Po({n) IJt, =0) = —0 exp[Pp, (n; ——,'N)1

Z.

„g (k -1)(k -2)y'+2(k -1)(N- k)+ (N- k) (N -k -1)y-'
0 (k —1)(k —2)y + 2(k —1) (N —k) + (N —k) (N —k —1)y

where p, is a chemical potential and Z a normalization constant. Notice that (5) factorizes into independent
distributions for the single columns. For Jz & 0 one has to pass to the limit N ~ to be able to satisfy the
detailed balance condition. Then, in a homogeneous phase the occupation number of each column shows

only minor relative fluctuations about the average occupation number, say n. Expanding the logarithm of
I ({n) (n'}) to first order in deviations of the n, around n, one obtains the result

I't~(nm n —l, m + 1) n N —m —(4h (p —q) + 8u(n —m)}
exp

I"~~ ( n —1,m + 1 n, m) N —n + 1 m + I N
(6)

with i't =Kt, (1—@~Kt, ) ' and u=K„(1—$ k„) ', where Kt, =tanhPJt, ', K„=t nhaPj„nd a@= (n —N/
2)/(N/2). Under this approximation the detailed balance condition is satisfied by the stationary distribution

1

N
Po((n)) = —g e " 'exp({4h[ —,

' (bn;) +An;4n, +~]+4u(hn;) )/N) (7)
i li I

with 5n& = n; —n. From this equation the average occupation number n can be determined self-consistently

as a function of p, . Hence, n, h, and v depend on p, which, therefore, cannot be identified with the chemical

potential.
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Since the field stirs the columns so effectively
and thereby suppresses nearest-neighbor correla-
tions almost completely, one may expect the gas-
liquid phase transition to be of mean-field type.
This is confirmed by explicit calculations. For
determining the critical temperature we transform
to discrete density waves nk= g~ ~e '"'An, , with
k = 2vrm/N and, for even M, m is chosen from the
values ——,M + 1,. . . —1, 0, +. . . , —,M. The sta-
tionary distribution can be expressed in terms of
these variables as

'M
N

Pp({n„})= — exp —X n„nZ n k M (8)

where uk = 2 {1/(1—P2) —h (1+2 cosk) —2u}/N.
The logarithms of the binomial factors were also
expanded to first order in n~

—n and Stirling's ap-
proximation was used. Further, p, was identified as
p, =P 'In{(1+/)/(I —@)}. In view of the par-
ticle-hole symmetry the critical point has to occur
for P, =O, implying /=0. The critical temperature
can be determined from the condition that either,
for J„~O, the compressibility (np ) (with the
brackets indicating an average over Pp), or, for
J„~0, the "staggered compressibility*' ( n „) goes
to infinity. As one sees from (8) this leads to the

conditions

2E'„+3KI', = I (J„~0),

2E'„—EI', ——I (Ji, ~ 0).

In the isotropic attractive case, for example, this
yields a critical temperature T, =0.488J/ka, with
kz Boltzmann's constant, as compared to the equili-
brium temperature TP =0.227J/ka. In contrast to
the equilibrium case there is a phase transition at
nonzero critical temperature also for JI, =O and
J„)0 as well as for J„=O and Jz & 0. It is also
noteworthy that one need not take the limit
M ~ to obtain the phase transition; it occurs al-
ready for M =2. This is consistent with the mean-
field character of the transition.

In the following calculations we restrict ourselves
to the case Jh ~ 0, noting, however, that the case
Jz ~ 0 can be treated in a completely analogous
way. The coexistence curve P„(T),with T & T„ is
obtained as usual with the aid of the Maxwell con-
struction. Using particle-hole symmetry one sets
p, (p„)= p, ( —$„)= p, (0) =0, with p, the real
chemical potential, different from p„and employs
the compressibility relation BPp/B@ = up to calcu-
late p, (P„). This leads to a quadratic equation for
@2„which close to the critical point reduces to

@„=—3{2(BE„/BT)+3(BE„/BT)} (1 —2E„' —3E„) ' (T, —T). (10)

From this one sees immediately that the critical ex-
ponent P, defined by P„—(T, —T)i as T T„
has the mean-field value —,'. The compressibility in
the neighborhood of the critical point also is of typi-
cal mean-field form, i.e., ~T ——MN/(2up)
=A +-~T T, { ', with —A+ = —{8(BE„/BT)
+12(BE„/BT)}T'T for T & T, on the critical iso-

chore, and A =22+ for T( T, on the coex-
istence curve. The specific heat, defined as the
temperature derivative of the internal energy (1),
exhibits the usual jump from the constant-value
zero for T & T, to —NMB/BT{(JI, +J„)@„}for
T&T,.

The stationary current is found from J
= gj~ ti ~~ (7i;,.(I —q;+»)), which becomes

J= —,'I iiM(1 —$ )+O(MN ' )

Hence, for a half-filled lattice the slope of J as a
function of temperature shows a jump at T = T, and
in general such a jump occurs as soon as one enters
the coexistence region. The correlation function
between column occupation numbers can be ob-
tained easily from (7), e.g. , with the aid of
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transfer-matrix methods. One finds the result

n;
—n n~

—n

= exp( —
~i

—j ~~) tanh(K/2)M/2up (12)

with K=ln[{(8h+u )' —u' }/{(gh+u )'i
+up }]. Thus the correlation length I/~ diverges
as ~T T, ~

'i near t—he critical point, in agreement
again with mean-field theory. Furthermore, the
fluctuation in the occupation number of a single
column, obtained by setting i =j in (12), also
diverges as ~T —T, ~

'i near the critical tempera-
ture. As a consequence the correction term in (11)
exhibits a similar divergence near T„which may be
important for computer simulations on finite lat-
tices.

Generalization of our model to d-dimensional
simple cubic lattices is straightforward, provided the
horizontal coupling constants in all the principal
directions orthogonal to the field are equal. Then
the critical temperature is determined by the condi-
tions 2K„+ (2d —1)Kq ——1, for Kh & 0, or 2E„—(2d —3)K„=1,for k„& 0. This means that the
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absolute value of T, increases with dimensionality,
but the enhancement relative to the equilibrium
critical temperature decreases.

An intriguing feature of the phase transition
studied here is that, despite its simple mean-field
character, it has a very rich phase structure. First
note that for J&=0 below T, there are infinitely
many pure states, as each of the columns orders in-
dependently into either the gaseous or the liquid
phase. This degeneracy is not removed as soon as
JI, is given a small nonzero value. For example, for
positive JI, the staggered state remains stable for all
temperatures below a critical temperature, given by
(9b) for J„&0 as well. Stable means really stable,
and not metastable, because to bring any column
from the gaseous into the liquid phase or vice ver-
sa, one has to pass a barrier of infinite height. Fur-
ther, just as for Jz =0, there is an infinity of other
stable states, each with its own critical temperature,
which can be characterized by specifying for each
column whether it is in the gaseous or in the liquid
phase.

Other interesting questions are connected with
the dynamics of system. One may ask for its
dynamical critical behavior in case of a conserved
order parameter (uniform ordered state) or a non-
conserved one (staggered ordered state). Questions
of stability and metastability also are of obvious in-
terest. The boundary between metastability and
instability, the spinodal, can be determined from the
conditions us=0 (Jh & 0) or n =0 (J„(0).
Especially intriguing is what will happen to a less-
favored stable state (e.g. , the staggered state in case
Ja & 0) when temperature is raised through its criti-

cal temperature.
To be noted further is the point that the value of

the critical temperature depends strongly on the
choice of the jump rates. Thus for the rates chosen
in (1) there is no phase transition for Jh ——0.

Finally, there remain several problems that can-
not be answered just by considering our simple
model. The most obvious one, perhaps, is the
question where and how the critical behavior
crosses over from Ising-type to mean-field type
behavior as the strength of the field is increased.
According to Onuki and Kawasaki the introduction
of a uniform shearing, however small, immediately
changes the character of a gas-liquid phase transi-
tion to mean-field type, but whether the introduc-
tion of a small field along one of the principles axes
in the lattice gas has a similar effect remains to be
proved.

The work reported here was started during a visit
of one of us (H.v.B.) to the Technion in Haifa.
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