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Critical Behavior of a Dilute Interacting Bose Fluid
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The crossover from critical behavior to ideal Bose-gas behavior in a dilute, weakly interact-
ing Bose fluid at low temperatures is shown to be described by a scaling function depending
on the temperature, density, and dimensionality. The results are applied to the experimental
measurements of Crooker et al. on the superfluid density of He in Vycor glass. The satisfac-
tory agreement obtained lends support to the model of He in Vycor as a dilute, weakly in-
teracting, three-dimensional Bose fluid.

PACS numbers: 67.40.—w

In this Letter we study Bose-Einstein condensa-
tion in a dilute, weakly interacting Bose fluid and
show that the crossover from critical behavior to
ideal Bose-gas behavior can be described by a scal-
ing function. Possible realizations of such a system
are provided by superfluid He films adsorbed on
porous Vycor glass' and by spin-polarized hydro-
gen. In this Letter we address He in Vycor, which
is a highly connected, spongelike glass with a pore

0
size of 50—80 A in the experiments of Crooker
et al. ' These authors have studied the superfluid
density in Vycor over a wide range of overall densi-
ty p, the resulting superfluid transition tempera-
tures varying from 2 K down to 4.4 mK at the
lowest density studied. For all critical tempera-
tures, T, (p), the experiments are consistent with
the superfluid density varying as p, —(T, —T)t as
T T, with (= —', . Thus for all p the superfluid
transition in Vycor appears similar to that occurring
in bulk 4He, the exponent f being sensibly constant.
This suggests that the disorder introduced by the ir-
regular Vycor structure is irrelevant to the critical
behavior. This is consistent with the general theory
of the effects of disorder and the fact that the
specific heat exponent of bulk He is negative
(n = —0.02). The thermal wavelength of the 4He

atoms is comparable with the pore size at the lower
temperatures which should reduce the effects of
disorder. Vycor is a highly connected structure
and although the He atoms are confined to the sur-
face by the strong van der Waals potential, they
would be expected to behave as a three-dimensional y = (4 d)/(d —2)— (2)

fluid. 5 At the lower densities the superfluid inter-
particle spacing is from 5 to 12 times the atomic
hard-core diameter and thus the fluid is very dilute.

The observed size of the critical region described
by ( = —, shrinks as p decreases and a crossover to
ideal Bose-gas or mean-field-like behavior, p,—T, —T, is seen as T, (p) 0. The scaling theory
of critical phenomena indicates that this behavior
should be described by a scaling function, the ex-
istence of which should be independent of any de-
tailed model of He in Vycor. The theory discussed
below shows that the form of the scaling function
for the superfluid density at low temperatures and
densities in d dimensions is

p, = p, (0) (T/T, ) 'tY [(a/AT)d '/t&]

Here p, (0) is the superfluid density at T = 0,
t = (T,/T) t —1, a is the scattering length charac-
terizing the interaction of He atoms, Ar ——(h /
2am'kaT)'t is the thermal wavelength of 'He
atoms of effective mass m', and @ is a universal
crossover exponent. Ideal Bose-gas behavior fol-
lows when T 0 if Y(0) =1 and a crossover to
bulk behavior, p, —t~, follows as t 0 at T, ) 0 if
Y(y) —y

' t t@ as y ~. The critical region thus
shrinks like t —T ~ as T, 0. The aim of
this Letter is to test (1) against the data, to deter-
mine the exponent $, and to report a calculation of
the scaling function, Y(y), to order a=4 —d. In
fact we find
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for all 2& d ~4. For 2 =3 this yields /=1 and
Fig. 1 then demonstrates that the data of Crooker
et al. ' satisfy (1) rather well. The calculated scaling
function (solid curve) gives a good qualitative fit.

We approach the problem by modeling He in
Vycor as a mobile, low-density, spinless Bose gas in
a d-dimensionally connected medium whose prop-
erties enter only through an effective mass, m', and
an effective two-body potential with Fourier
transform vk. The Hamiltonian is

k k k+ 2V ~ ~k k k" k'+k k" —k'
k k~ I k I I

(3)
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where ek=t k /2m' and ak, ak are Bose creation
and annihilation operators. At low densities we can FIG. l. A scaling plot of the experimental data (Ref.

replace vk by an effective s-wave scattering poten- I), including eleven values of T, (p) from 6 to 12 mK.

(filled circles): To plot the data we choose, purely for
where tt is the scattering length. Both m' and a ~~„v~„i~„~~ to set (g2m /m )i/2 5 g and II 0025
should be only weakly temperature-dependent. The solid line is the theoretical result, the single ad-

In order to study the superfluid transition and justahle parameter heing fixed hy choosing (a m /
utilize current knowledge of critical phenomena, we ~„,),'Q, =200 A to match they' " singularity at the ori-

map (3) onto a classical spin model. To this end we gin, y ~ (Ref. 9).
first note that the critical properties of an ideal Bose
gas coincide with those of the spherical model of a

ferromagnet. Secondly, for T, & 0, critical behavior does not depend on the noncommutative aspects of
quantum mechanics. We thus compare (3) with

~s= ——XJkIskI'+ —X uks „'s„
k kk k

where the exchange coupling, of finite range 80, is

Jk —Jp(1 Rpk +. . .) while the Sk are classical
n-component vectors with —oo & Sg & ~. Corre-
sponding to the implied constant-density constraint
for (3) we impose the spherical constant

gkISkI =p= —Xk(akak). (5)

k„=C,/Ar = C, (2mm'k, T/h')'t2, (6)

where Az is the thermal wavelength. This is con-
firmed by matching the critical free energies of the

For uk=0, (4) and (5) specify the spherical model.
In order to match the ideal Bose gas properly in the
critical region, an appropriate wave vector cutoff,
kz, is required in (4). One expects

I

two models which further yields

J+ 2 =g2/2m"

C = —(4 ) (d —2) I (d/2) $(d/2).

Here I'(z) and ((z) are the gamma and zeta func-
tions and we have set n =2 (see below). The in-
teraction parts of (3) and (4) can likewise be
matched by comparing the corresponding perturba-
tion expansions. These have identical structures if,
but only if, uk=uk/8 and n =2.

The constraint (5) can be handled by adding a
term ——,'zgkISkI to (4) where z is analogous to
the chemical potential. The resulting reduced-spin
Hamiltonian with momenta rescaled to unit cutoff
is then

A g= 2 (r+q )oq'CT —q+u (T g' o g CT II' (7
q' q" q q +q

where f = fddq/(2m)d, while

r = —(z+ Jp)/JpRpkt„u =upkA "kaT/JpRp.

(8)

(9)
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n(To/T
e. 2'~'/'(d —2)1 (d/2)

' (10)

where I' is the free-energy density for (8) while T',o

is defined by pAd(T, ) =$(d/2). This constraint
leads to exponent renormalization' in the usual
way so that Po is replaced by @=go/(I —ao)
where uo = e/2, which is the result (2).

The Hamiltonian (8) has been studied extensive-

Note that u varies as (a T) —(a T, ) d

in the critical region. Ideal-gas behavior (vo ——0)
corresponds to the standard Gaussian fixed point,
G, about which u is a relevant renormalization-

group perturbation scaling as t with go= e/2 (for
all d). This, however, neglects the constraint (5)
which now becomes

ly and the free energy has been calculated by Rud-
nick and Nelson" and Nicoll and Chang' to order

The onset of the critical region is where the ar-
gument of the scaling function (1) is of order unity;
more quantitatively from Ref. 11 we have

,
'

e t =—(u/u') ' & = ( T/ T()) ' " 4',

where u'= 2rr2e/(n + 8) is the fixed point value of
u. The parameter To is (C3u'/ma) (h /8am'ka)
in three dimensions. Taking a =3 A, I =mH„
and C3=4.2 we find To-—0.3 K. Replacing Tby T,
on the right in (11) shows that the critical region
varies with density as t —

p
" or i —

p
ln d=3.

The experiments of Crooker et al. ' determine the
superfluid density whose magnetic analog' is the
helicity modulus Y which has been calculated to or-
der e by Jasnow and Rudnick':

P/kT = —(r/4u) g6/("+ ) [I+ (u"/4m2) (I —g ') ]l

where r = r + (n + 2)u/4' + 0 (eu, u ), u = u/u", Q = Q (1 —u ) ', and Q satisfies

Q = I —u+u( —2r) '/
Q ",

with g„= (n + 2)/2(n + 8). From the free energy of Ref. 12 the constraint (10) becomes9

1 —-e(1 —Q )]

(, „)/(„+,) 4 n nr

2(n —4)r( 1 —g e(I —g ') 4 (4')"'I'(d/2)(d —2)n~

(12)

(13)

(14)

t X-"' 1 ——,
'

e [I —Z (x) ']
Z (x) (4 —n)/(n + 8) (15)

(4vr)' 'r(d/2)(d —2) &' ~ 4(4 —n )u' 1 —g„a[I —Z(x) '] 4
4 )

where r =r(1 —u) " and we have omitted a small term on the right. We write the solution of (15) in the
form x = T (y) where y = u/t@. The helicity modulus (12) can be written

Y/kaT = tY(y) {(2nkA )/[(d —2) (47r)d I (d/2) ]],
where

Y(y) =y' ~[U[T(y) ]/T '(y)] [(d —2)1 (d/2) (4') d 2/2n ], (17)

and from (12) U satisfies
1

U( )= .z( )"'"'"I+, [I—z-'( )] .
8u' 4m

(18)
Finally, inverting the rescaling transformation

leading to (8) gives the superfluid density
2 ' ' dj2

p, = Y = —pin" tY(u/t~), (19)h, 2 T,

(16)

which at low temperatures and close to T, is of the
form (I). In the limity 0 (u « t~), Y(0) = I,
and p, reduces to the spherical model result. In the
opposite limit y ~ (t~ && u ) we find

p, —t" " ' where v=(1 ——,e)/(I —g„e) is the
helicity-modulus critical exponent and u = e (4
—n)/[2(n + 8) (I —g„e) ] is the specific heat ex-
ponent, both to order e.

In conclusion, the crossover from critical to ideal

Equations (12), (13), and (14) allow Y to be expressed in terms of temperature and density by eliminating r
in favor of t.

The scaling form (1) follows by writing (13) and (14) in scaling form. 9 Thus (13) has the solution

Q =Z(i/r'/ ) =Z(x) where t'/=u(1 —u) ' and r'= —2r(1 —u) "are nonlinear scaling fields. The con-
straint (14) can be written

800



VOLUME 53, NUMSER 8 PHYSICAL REVIE% LETTERS 20 AUcUsT 1984

Bose gas of the superfluid density has been shown
to be described by a scaling function. This scaling
function is in satisfactory agreement with the exper-
imental measurements on He in Vycor, supporting
the description of this system as a dilute, weakly in-

teracting, three-dimensional Bose fluid.
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