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Semiclassical Approach to the Scattering of Atomic Beams by a Corrugated
Surface Potential: An Approximate Analytical Solution
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An approximate analytic solution to the scattering problem of atoms by a weakly corrugat-
ed Morse potential is presented. In the classical limit the resulting scattering amplitude coin-
cides with that given by the Kirchhoff approximation for the corrugated hard-wall model with
a corrugation function identical to that of the Morse potential. Quantum mechanical effects
appear as deviations from the Kirchhoff formula. For a general potential it is shown that it is
the potential corrugation near vanishing potential which dominates the scattering process and
not that at the classical turning point.
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The scattering of atomic and molecular beams
from a solid surface is a promising tool for investi-
gating structural and dynamical properties of solid
surfaces. ' Recent activity in this field has been
focused on structural analysis of single-crystal sur-
faces with use of He diffraction techniques. '

It turns out, however, that even when only the
geometry (or topography) of the surface is of in-
terest, simple-minded models like the hard-cor-
rugated-wall (HCW) models sometimes yield signi-
ficant deviations from theories which use more
realistic (i.e. , soft) potentials. On the other
hand, the use of realistic model potentials impairs
considerably the simplicity of the analysis, making
large-scale numerical computations virtually inevit-
able. In this Letter we report significant progress in,

developing an approximate analytical solution to
this problem for a realistic model potential, such as
the corrugated Morse (CM) potential. Our motiva-
tion is twofold: (l) to provide an alternative simple
scheme to the widely used HCW model for inter-
preting experimental data from soft surface poten-
tials, and (2) to develop a simple method, which
can be generalized to include inelastic effects, for
which the use of numerical analysis would be im-
practical.

We have discovered a general property of the
scattering amplitude in the semiclassical limit which
is a major source of simplification in this problem.
In this limit the transition amplitude from the in-
coming momentum p to the outgoing momentum
p' can be written as

&(p p)=lp, l(«'))) 'f~'rCr(vK)I'(p';K)-l(p' )i')'')"'—
where

l

above, the stationary phase (SP) method is applied
to the three-dimensional integral in Eq. (2). The
corresponding stationary point r 0 satisfies the
equation [r)S-„/8 r ]-„=p, so that together with

the Hamilton-Jacobi equation

(tlSg/8 r ) '= 2MG [E—V( r ) ],
one finds that the stationary point ro lies on the
equipotential surface V( r ) =0. As we shall see
later, this remarkable result leads to a major simpli-
fication of the scattering problem. The surprising
aspect of this result is that the major contribution to
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f(pK) = (M~)imp) fd'r )'( r )A-„( r) exp(()/t)[p r —Sz( r )}},
S z ( r ) is the classical action integral corresponding
to the fully distorted incident wave with an asymp-
totic momentum tK parallel to the surface plane,
A K ( r ) is the amplitude of the corresponding sem-
iclassical wave function, V( r ) is the potential,
MG is the particle's mass, Ip, I

= —, Ip, —p,
'
I, and &

is the illuminated surface area. Note that in com-
puting f"(p;K) from Eq. (2) the appropriate selec-
tion for S-„(r ) is that of the distorted reflected
wave. Note also that we use the standard conven-
tion that capital letters denote projections of three-
dimensional vectors onto the surface plane. Con-
sistent with the semiclassical approximation used
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the matrix element f(p;K) originates in a small, potential fre-e regime near the crossover of the potential
from attraction to repulsion, far away from the classical turning point T. his is clearly due to gross cancellation
of contributions from regions where the phase —Sx ( r )/t of the incident wave is strongly distorted by the
potential and, as a result, its matching with the free particle incident wave is very poor.

For scattering by a one-dimensional (1D) potential, f(p, ;0) (which is just the reflection coefficient) can
be easily calculated by transforming the spatial variable of integration z in Eq. (2) to a new variable

u = V(z)/D, where D is the potential well depth, and then using the SP method. Consequently, one obtains

f(p, ;0) =exp((i/k) Ip z(0) —S(0)}}2ikt u exp(it u')du, (3)

V(R,z) =D —2Dp„p, (R,z) =e" (4)

where ((R) is the corrugation function and X is the softness parameter. We assume weak corrugation [i.e.,
(()$/BR) « 1 almost everywhere] and solve the Hamilton-Jacobi equation for S-„(R,p, ) iteratively in the

small parameter k7$(R) ()7 = 8/BR). To second order in 'd'( (but neglecting higher derivatives) we obtain

S-„(R,p, ) =tK R+ (tK 'k7()lnp/x+ ([1——'()7()'] S(p, )

+t(K '7f)' ln[2p/(1+ W(p) +yp)]/2k, X), (5)

where S(p, ) (Ref. 8) is the classical action for a particle with energy t k, /2MG = E —t'K /2MG in»D
Morse potential V(p ) =D pz —2D p, , IV(p) = (1+2yp, —

y p, )'l, and y = 2MGD/t k, . In Eq. (5) the plus
corresponds to the incident wave while the minus corresponds to the reflected wave. Using Eq. (5) we have
derived the following expansion for the T matrix.

T(P, P ) i(IP I/IP P,'I) =U
' Jd'R BBkkeexP(i '((,0 —0') 0+(P, —P,')((R)I/k}. (6)

where U is a shortened notation for

Up (R) = [[I+ 2 (V() ]P* tKo'(7( t{Ko')7()~/2k, o]/tk, o (7)

tk o (p t K )'l, t—K = [(P+P')+(p, +p,')'7(]/2,

B=(key/2(XJU) j ,dp(p, —2)exP(ik, g(u)/X].

where f (p, ) = U lnp, —XS (p, )/hk, o, and 8' is obtained by replacing U by U' in Eq. (8). U' is obtained from

Eq. (7) by replacing p, with I' and the minus in front of the last term within the curly brackets with a plus.

Equation (6) has been derived consistently with the approximations used in the derivation of Eq. (5), name-

ly the integrals have been computed by the SP method and any expansion in V$ has been kept to second or-
der. The classical limit of the scattering amplitude, given by Eq. (6), is obtained when the integrals over p,

[Eq. (8)] and over R [Eq. (6)] are performed by the SP method. The stationary point for the former integral

is given by p o= 1+ [1+(1—U )/y]'l2 while the stationary point Ro for the latter integral is, to second order

in Vf, given by

(P —P' ) + (p, -p, ) )7 ~ (R,) = 0. (9)

(8)

To the same order,

Uq {Ro)= Uq, {Ro)=1 B(Ro) =8'(Ro) =exp[ik, of(2)/X],

where X = (MGD/2tpX), X = (du/dz)„o, and z (0) and $(0) are the respective values of z and S at u = 0.
The interesting aspect of Eq. (3) is that despite the use of the semiclassical approximation, the reflection
coefficient ~f ~

obtained from Eq. (3) is identical to the exact result (i.e., 1). This is obviously due to the
fact that in the semiclassical limit (i.e. , where tX « p, ) the important region of integration (i.e., u 1/JX)
is far away from the classical turning point [i.e., at u = (I/)k) p, /4Xt && I/i} ].

The extreme simplicity of our approach for a 1D potential indicates that it can be used to derive an analytic
solution for a weakly corrugated three-dimensional potential. We have worked out such a solution for a CM
potential defined by
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and both p, p
—2 and p, p

—2 vanish at Rp. This result is consistent with the exact theorem, which we have
proved above, stating that the stationary point always lies on the surface V( r ) = 0. The resulting expression
for the T matrix in the classical limit is thus given by

1(p. p ) = i IF, I'(1+ [(P —P')' —4, +p.')'i/g l~, I'j

x d Aexpi P —P' R+ p, —p,
' R

where all irrelevant phase factors have been
dropped. This is essentially the classical limit of the
Kirchhoff approximation' " for the scattering by a
HCW with a corrugation function ((R).

To restore quantum mechanical (QM) effects,
the integral over p, in Eq. (8) and the lateral in-

tegral in Eq. (6) should be computed by a more ac-
curate method than the SP method (this is crucially
important near a caustic, where a rainbow singulari-

ty is generated in the classical limit" ) Such a

method would emphasize regions located away from
the stationary point more than the SP method so
that the resulting scattering amplitude would devi-
ate from the QM version of the Kirchhoff approxi-
mation. Such deviations may be quite significant,
especially for high incident energies, since the am-
plitude B is sensitive to deviations of U from its
value at the stationary point (i.e. , 1) for small
values of y [see the expression for p, o below Eq.
(g)l.

The conditions under which Eq. (6) is valid can
be summarized as follows: (1) The incident veloci-

ty should be sufficiently high such that k, p ))X

(the semiclassical limit). (2) The effect of the at-

tractive well should be negligible. This condition is
satisfied where X = k, Oy/4X « 1 [see Eq. (3)l. (3)
The corrugation should be weak, i.e. , i'7(i « l.
(4) (Xa) » [V(+P/iP, i], where a is the size
of the surface unit cell. This condition guarantees
that the lateral distance between the points of inter-
section of the atom's trajectory with the surface
V( r ) =0 is much smaller than a. Classically it
means that multiple-hit events are negligible, as in-

dicated by the Kirchhoff-type form of Eq. (10).
Thus provided that condition (1) is fulfilled, our
theory works better for harder potentials (i.e.,
larger X), weaker corrugation, and for incoming
beams closer to normal incidence (P = 0).

It is instructive to discuss some or our basic con-
clusions in comparison with the relevant literature.
In attempting to interpret He-diffraction data from
complex surface structures' ' most researchers
have used the HCW model with the intuitively ap-

pealing assumption that the best corrugation func-
tion corresponds to the classical turning surface.
Quite surprisingly we have found that a better de-
finition for the corrugation function should be the

80

equipotential surface V( r ) = 0, which usually leads
to a weaker corrugation. This conclusion seems to
agree with a remark which appears frequently'
in the literature, indicating that the use of the HCW
model to fit the scattering data leads to a corruga-
tion weaker than that expected from the actual soft
potential at the classical turning surface. Surface
charge density calculations for Ni(110) (Ref. 12)
indicate, for example, that the corrugation ampli-
tude at electron density, p = 10 " a.u. is more than
two times larger than that at p = 10 a.u. With use
of the Esbjerg-Nerskov relation' for the repulsive
part —V„p of the He-surface potential, the above-
mentioned values of p correspond to the values of
7.5 and 75 meV of V

p respectively. Thus, since
the attractive potential well is of the order of
several millielectronvolts, the potential corrugation
near V=O is about a factor of two smaller than that
at V = 70 meV. This is comparable to the ratio
between the experimentally fitted corrugation am-

plitude, obtained by Rieder and Garcia' by using
the HCW model, and the theoretical corrugation
amplitude, computed by Haman' at the classical
turning surface for E;, = 50 meV. Note that in this
case the experimentally fitted values of ((01) (Ref.
13) are almost constant in the range of
E;, =12.8—105.7 meV, in agreement with our basic
conclusion.

Another point of interest in this context concerns
the effect of the attractive potential well; it is again
very natural to assume that for incident energies of
several tens of millielectronvolts a well depth of a
few millielectronvolts should not have a big effect.
As shown by Perreau and Lapujonlade, 5 ho~ever,
who compared Armand and Manson's exact numer-
ical results for a CM potential with those for a
purely repulsive corrugated exponential potential,
the effect of the attractive well on the scattering
from a soft potential is important even for
y =D/E = 0.1. This seems to agree with our con-
clusion that the effect of the attractive well may not
be neglected if X —1. For example, in the case
studied in Ref. 5 (i.e. , with E =63 meV, D =6.3
meV, and X = 1 A ') 0.5 & X & 0.25 while

y = 0.1. Generally speaking, the fact discovered in
the present work, that the dominant scattering am-



VOLUME 53, NUMBER 1 PHYSICAL REVIEW LETTERS 2 JULY 1984

plitudes are generated away from the classical turn-
ing point, down the wall in the vicinity of the attrac-
tive well, clearly indicates the important effect of
the attractive well on the scattering process even for
relatively high energies. A more quantitative test
of our approach would be to compare it with an ex-
act QM calculation for the model potential con-
sidered in this paper [Etl. (4)]. To the best of our
knowledge this model potential has not been con-
sidered in the past. Exact close-coupling calcula-
tions have been applied" to a closely related model
potential such as a Morse potential corrugated only
in its repulsive part.

A comparison between results obtained by such
an exact method for this version of the CM poten-
tial and the corresponding results obtained for the
HC%, both applied to He diffraction from
LiF(100), shows that the two methods are in best
agreement with each other when the corrugation
amplitude of the HCW is about twice that of the
CM used. Furthermore, Armand and Manson's ex-
act numerical results for a similar model potential
have shown a similar behavior in the case where
E = 21 meV (but not for E = 63 meV). It can be
readily verified' that for this version of the CM po-
tential the corrugation amplitude of the equipoten-
tial surface V = 0 is twice the corrugation amplitude
of the equipotential surface V = E for E much larger
than the potential well depth D. This finding is
thus consistent with our basic conclusion regarding
the importance of the potential corrugation near
vanishing potential in the scattering process.

These preliminary tests of the proposed scheme
are very encouraging. More elaborate quantitative
tests are, of course, necessary to establish its use-
fulness as a simple method for analyzing complex

diffraction data or as a tractable scheme for investi-
gating the far more complicated problem of inelastic
scattering.

One of the authors (T.M. ) is indebted to J. Ka-
triel, N. Moiseyev, I. %ebman, and J. Klafter for
helpful discussions.
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