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The statistics of quasiparticles entering the quantum Hall effect are deduced from the adia-
batic theoreme These excitations are found to obey fractional statistics, a result closely relat-
ed to their fractional charge.
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Extensive experimental studies have been carried
out' on semiconducting heterostructures in the
quantum limit ct)pr )) 1, where p)p= eBp/m is the
cyclotron frequency and v is the electronic scatter-
ing time. It is found that as the chemical potential

is varied, the Hall conductance (r~ = I„/E»
= 2/e /h shows plateaus at 2/= n/m, where n and m

are integers with m being odd. The ground state
and excitations of a two-dimensional electron gas in
a strong magnetic field 80 have been studied in
relation to these experiments and it has been found
that the free energy shows cusps at filling factors
v = n/m of the Landau levels. These cusps corre-
spond to the existence of an "incompressible quan-
tum fluid" for given n/m and an energy gap for ad-

ding quasiparticles which form an interpenetrating
fluid. This quasiparticle fluid in turn condenses to
make a new incompressible fluid at the next larger
value of n/m, etc.

The charge of the quasiparticles was discussed by
Laughlin2 by using an argument analogous to that
used in deducing the fractional charge of solitons in
one-dimensional conductors. He concluded for
2/= 1/m that quasiholes and quasiparticles have
charges + e" = + e/m. For example, a quasihole is

formed in the incompressible fluid by a two-
dimensional bubble of a size such that 1/m of an
electron is removed. Less clear, however, is the
statistics which the quasiparticles satisfy; Fermi,
Bose, and fractional statistics having all been pro-
posed. In this Letter, we give a direct method for
determining the charge and statistics of the quasi-
particles.

In the symmetric gauge A( r ) =
2 Bpx r we con-

sider the Laughlin ground state with filling factor
v =1/m,

= ff (z&
—zk) exp( ——, X/~zt ~ ),

where zj =xj+iy, . A state having a quasihole local-
ized at zo is given by

(2)

dt

so that

+Zp=W X,.—In[z, —z (t)](I/ (6)

=iN ' —,.ln z; —z

Since the one-electron density in the presence of

while a quasiparticle at zo is described by

g, (8/(); —p/a, ' )([/,

where 22rap8p= @p= he/e is the flux quantum and
N+ are normalizing factors.

To determine the quasiparticle charge e', we cal-
+zp

culate the change of phase y of ([/ as zp adiabati-
cally moves around a circle of radius R enclosing
flux P. To determine e", y is set equal to the
change of phase,

(e /ee)fe d'( =2ee(e'/e)4/4e, (4)

that a quasiparticle of charge e' would gain in mov-
ing around this loop. As emphasized recently by
Berry6 and by Simon (see also Wilczek and Zees
and Schiff ), given a Hamiltonian H(zp) which
depends on a parameter zo, if zo slowly transverses
a loop, then in addition to the usual phase

fE(t') dt', where E(t') is the adiabatic energy, an
extra phase y occurs in (i/(t) which is independent
of how slowly the path is traversed. y(t) satisfies

dy(t)/dt =i ((I/(t) ~d([/(t)/dt)

From Eq. (2),
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the quasihole is given by

'IX;&(z; —z)Ie "),
we have

dy +io d
dt

=i dx dy p '(z) —In[z —zp(t) ],
dt

+so
where z =x+iy . We write p '(z) = po
+ Sp '(z), with po = v$/$o.

'

Concerning the po
term, if zo is integrated in a clockwise sense around
a circle of radius R, values of ~z ~ & R contribute
2mi to the integral while ~z ~ )R contributes zero.
Therefore, this contribution to y is given by

yo Ir(&z
dx dy p02

27r(n—) ~ ———2srvtt/yo, (IO)

where (n ) z is the mean number of electrons in a
circle of radius A. Corrections from hp vanish as
(ao/R), where an=(tc/eB)' z is the magnetic
length. This term corresponds to the finite size of
the hole.

Comparing with Etl. (4), we find e"=ve, in
agreement with Laughlin's result. A similar
analysis shows that the charge of the quasiparticle

Z ~

Q~ 'is —e .
To determine the statistics of the quasiparticles,

we consider the state with quasiholes at z, and zb,

A convenient method for including the statistical
phase hy is by adding to the actual vector potential
Ao a "statistical" vector~otential A4 which has no
independent dynamics. A& is chosen such that

(e'/lie)fX& dr=Ay=2~v, (13)

when z, encirlces zb. One finds this fictious A& to
be

d,ozx(r —r, )
A4(r —rb) =

2mfr —rb[
(14)

if the quasiparticles are treated as bosons and
Po(1 —1/v) if they are treated as fermions.

Thus, the peculiar statistics can be replaced by a
more complicated effective Lagrangian describing
particles with conventional statistics. '2

Finally, we note that if one pierces the plane with
a physical flux tube of magnitude $, the above ar-
guments suggest that a charge ver/Po is accumulat-
ed around the tube, regardless of whether P/@o is
equal to the ratio of integers.
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y
' '= Nb g, (z; —z, ) (z; —zb)y .

As above, we adiabatically carry z, aroound a closed
loop of radius R. If zb is outside the circle ~zb ~

= R
by a distance d )) ao, the above analysis for y is
unchanged, i.e., y= —2mvdt/po. If zb is inside the
loop with ~zb~

—R && —ac, the change of (n)tt is
—v and one finds the extra phase Ay = 2m v.
Therefore, when a quasiparticle adiabatically encir-
cles another quasiparticle an extra "statistical
phase"

b, y =2+v (12)

is accumulated. ' For the case v = 1, Ay = 2m, and
the phase for interchanging quasiparticles is
t5y/2=m corresponding to Fermi statistics. For v

noninteger, 4y corresponds to fractional statistics,
in agreement with the conclusion of Halperin. "
Clearly, when v is noninteger the change of phase
Lky when a third quasiparticle is in the vicinity will

depend on the adiabatic path taken by the quasipar-
ticles as they are interchanged and the pair permu-
tation definition used for Fermi and Bose statistics
no longer suffices.
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