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Persistent-Current Experiments on Superfluid 3He-B and 3He-A
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We have investigated persistent flow of superfluid 'He with an ac gyroscope filled with 20-

p, m powder, In He-8, currents circulate undiminished for 48 h at least; this implies a
viscosity 12 orders of magnitude lower than in the normal fluid. In 'He-A, the current does
not persist. The observed critical velocity in He-8 at P ~ 12 bars is independent of tempera-
ture. At P ) 12 bars there are two regimes in the 8 phase: For example, at 29.3 bars the ul-

timate critical velocities are 5.4 and 7.8 mm/s, respectively.

PACS numbers: 67.5Q.Fi

%e present in this Letter results of persistent-
current experiments in He-8 and He-3; we have
obtained extensive data at eight different pressures.
A comparison with the recent results of Gammel,
Hall, and Reppy, ' at P=29 bars, reveals several
qualitative differences. For example, we see a re-
versible response of the superfluid to subcritical
speeds of rotation and have observed two regions in
the 8 phase with clearly different critical velocities;
we have also extended persistent-current measure-
ments from 1 to 48 h. By use of finer powder in
the experimental cell, critical velocities became
larger and the scatter of the data was thus consider-
ably reduced over the results of Ref. 1 ~

Our experiments were carried out in a rotating
nuclear refrigerator. The basic measuring device,
an ac gyroscope, is illustrated in Fig. 1. A metal
torus, packed with 20-p, m plastic powder, pfrms a
path for the circulating superfluid. This ring
(R = 22 mm, r = 3 mm) is supported by two sets of
mutually perpendicular hollow copper torsion tubes,
also used as the filling capillaries for the He sam-
ple. Torsional modes about the tubes are deter-
mined by angles 8 and ItI. The device is ac-driven
about 8 by a superconducting solenoid inside a
niobium shield; capacitive detectors are used for
monitoring the ItI motion.

%hen the ring is driven about 0 at the resonant
frequenCy tog2Tr Of the It mOde, the reSpOnSe due
to the angular momentum L = z L of the circulating
superfluid is ItIO= Q&L8ofI&to& , here 8o is the am-.
plitude of the drive motion and I@ and 0~ are
respectively the moment of inertia of the torus and
the quality factor of the resonance about the ItI axis.
In our apparatus, 0&= 20000, I&

——30 g cm2, and
0I~/2n = 69.8 Hz; typically 8II ——10 s rad giving
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FIG. 1. The ac gyroscope. The foot is thermally con-
nected to the nuclear refrigerator. For further explana-

tions, see text.

Ito=10 rad. In our mode of operation, with

toe )) co&, /II is insensitive to changes in the
resonant frequencies. The response Qo is detected
capacitively and the preamplifier output is fed back
to a self-resonating drive circuit. This technique
ensures a constant-amplitude drive, strictly at the
resonant frequency of the ItI mode. The minimum
observable change in L is 0.01 g cm2/s ( —102it )
using 12-s integration time. Noise in the system is
mostly of mechanical origin.

The L sensitivity of the device can be calibrated
by means of the Coriolis effect: This force pro-
duces an additional torque about the It axis while
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FIG. 3. Critical velocity u, at P = 15.0 bars (open cir-
cles) and 12.0 bars (filled circles) as a function of the re-
duced temperature T/ T, . Lozenges are the data of Gam-
mel, Hall, and Reppy (Ref. 1) at P = 29 bars, multiplied

by 5, the ratio of the pore sizes [(100 p, m)/(20 p, m)];
this reduction factor is only approximate because of dif-
ferent types of geometries involved.

B phase continuously for 48 h, L was again mea-
sured. This value was then compared with that ob-
tained after the cryostat was again rotated at the
same velocity as before and then stopped. Within
our experimental accuracy of 10% there was no de-
cay in the signal. This gives for v, the relaxation
time of the superflow, a value in excess of 450 h

and implies in the 8 phase an effective viscosity,

q,rr= pd /r, which is at least 12 orders of magni-
tude smaller than for the normal liquid at the same
temperature. Here d = 20 p, m is the average size
of the interstitial pores.

Measurements of L made after thermal cycling in
the region below T= 0.98 T, showed that the angu-
lar momentum is a reversible function of tempera-
ture. In addition to the fact that v, is independent
of temperature, this demonstrates that, because of
macroscopic quantization, circulation is conserved
in 3He-8 as in He II.~ The temperature reversibility
was used to study the stability of persistent currents
in the immediate vicinity of T, . These experiments
showed that above T=0.98T, the critical velocity
decreases markedly; at T=0.989T„ for example,
u, is (50 + 5)% of its Iow-temperature value.

Figure 4 shows a plot of L, vs p, /p at 29.3 and
12.0 bars. The slope of the linear regime between
T„=0.56T, and Tzz in the 29.3-bar data corre-
sponds to v, =7.8 mm/s. The critical velocity is
different below T„; at low temperatures v, 5.4
mmls. This value is close to that measured at
P ~ 12 bars. The change in v, at T„was not seen
by Gammel, Hall, and Reppy' because an experi-
mental artifact prevented accurate observations
near T=0.57T, .
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FIG. 4. Saturated angular momentum I., as a function
of p, /p at P= 29.3 bars (open circles) and P = 12.0 bars
(filled circles, crosses, two different experiments). The
straight line corresponds to v, = 7.8 and 5.6 mm/s for the
29.3- and 12.0-bar data, respectively (to compare the two
critical velocities one should divide the slopes by the den-
sity of 'He at each pressure). The nonzero L, in 2 phase
is an experimental artifact that was removed in later runs
(see Fig. 5).

Experiments are in progress to test the possible
relation of the change in ~, at T=0.56T, with the
vortex-core transition observed in NMR experi-
ments at T=0.6T, .6

Data in Fig. 5 illustrate that currents in He-A do
not persist, at least under zero magnetic field. This
conclusion is supported by an experiment in which
the maximum L = L, was first created and mea-
sured in He-B, whereafter the torus was thermally
cycled to the 3 phase and then back to the 8 liquid
again: The signal had completely disappeared dur-
ing this sequence. The upper limit for the super-
flow decay in He-3 is less than 1 min, which was
the transient time for the signal to recover from the
Coriolis shift after the cryostat had been stopped.
Because of the anisotropic nature of He-A, the su-
percurrent might persist in some geometry different
from our packed powder.

Critical velocities of the order of a few millime-
ters per second seem to be associated with vorticity
in confined geometries from 10 to 100 p, m. For the
emission of a vortex ring with diameter do,
u, —(t/m3de) ln(da/(a), where m3 is the bare mass
of the 3He atom and (e= 20 nm is the coherence
length. If the vortex rings have a diameter equal
to the pore size, the calculated critical velocity is 7
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factor.
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mm/s in our experimental setup, quite close to the
observed values 4.7—7.8 mm/s. Additional confir-
mation of this model is provided by the tempera-
ture independence of the measured v, . The weak

FIG. 5. L, vs p,/p around the 8 A transition at
P = 29.3 bars. Different symbols correspond to different
preparation angular velocities: open circles, O, ~

= 1.16
rad/s; filled circles, 0.86 rad/s; plusses, 0.57 rad/s. Note
that the reduced temperature scale at the top is non-
linear.
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