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New Universal Behavior for the Impure Baxter Model
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We have extended the Monte Carlo renormalization-group method to study the isotropic
Baxter model with random, quenched, site impurities. The results suggest that the critical
behavior can be characterized by the pure Baxter fixed line for negative four-spin coupling
terminating at the Ising fixed point.
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The effects of quenched impurities on the critical
behavior of magnetic systems in two dimensions
have received considerable attention in recent
years. ' ' One prediction of impurity effects comes
from the Harris conjecture' which states that if ran-
dom, quenched impurities are added to a magnetic
system, new critical exponents are found only when
n is positive. Renormalization-group (RG) studies
of an m-component continuous-spin model with
random, quenched impurities have also shown
that if the original system has a positive o. a new
"random" fixed point is stable and the exponents
then change. Exact work on a rectangular Ising
model with quenched, point defects has demon-
strated that the critical temperature, but not the
critical exponents, depend on impurity concentra-
tion. Monte Carlo (MC) simulations for two-
dimensional Ising models, " where o. =0 in the
pure models, with quenched, site impurities have
also found no evidence for changes in critical-
exponent behavior. However, studies' ' of the
impure Baxter-Wu model, where o. = —,

'
in the pure

system, show that new critical behavior is indeed
seen after quenched, site impurities are added to
the system.

In this Letter, we will consider the effects of ran-
dom, quenched, nonmagnetic, site impurities on
the critical behavior of the symmetric eight-vertex
(or Baxter) model. '4 This model, "which is exactly
soluble in the absence of impurities, involves a two-
and a four-spin interaction, and is unique in that
several of its critical exponents vary continuously
with the strength of the four-spin interaction. Since
the specific-heat exponent o. for the pure system
can be varied continuously, we can use this model
to test the Harris conjecture. ' While this conjecture
predicts qualitative changes in exponent behavior, it
does not predict the new values of the exponents.
Our study will provide quantitative estimates for the

exponents of the impure Baxter model.
Harris has also predicted that for positive o, , new

behavior will only be seen within a critical region of
temperature about T, (x) on the order of x'i,
where x is the fraction of quenched, nonmagnetic
impurities present in the system. Monte Carlo
studies of the simple-cubic Ising model'
(ot = 0.12) have not observed any changes in criti-
cal exponents with the addition of quenched, site
impurities, but the predicted width of the impure
critical region is probably too narrow to see any new
behavior. This possibility must be considered in
the present analysis for critical regions which are
predicted to be small.

To determine the impure Baxter exponents, we
use the Monte Carlo renormalization-group
(MCRG) method'7 which has been quite success-
ful' in reproducing the critical exponents of the
pure Baxter model. Since this method requires ac-
curate estimates of the critical temperature, we also
employ the MCRG method' to determine T, .

The Hamiltonian of the Baxter model is given by
(I~, & 0)"

~= —K2xo;o —Jt 4 X o;o' o „o,
nnn (ij&I}

where a factor of 1/kT has been absorbed in the K, .
The first summation is over next-nearest neighbors
(nnn) and the second is over the vertices of a
nearest-neighbor (nn) square; the spins take on the
values o-;= +1 and the nonmagnetic impurities,
which are randomly quenched in the lattice, are
represented by o-; = 0. Monte Carlo simulations are
performed on L x L lattices with several impurity
quenchings and the data are averaged in the
analysis. Multiple quenchings are essential to
represent adequately the various possible distribu-
tions of impurities, with larger numbers of quench-
ings needed as the lattice size decreases.
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In the MCRG approach, the RG transformation
is applied directly to the spin configurations gen-
erated by the MC simulation, producing configura-
tions for the renormalized spins. These new renor™
malized spin configurations allow us to calculate
any correlation functions of interest corresponding
to the effective renormalized Hamiltonian.

To extend the MCRG method to include
quenched impurities, a full treatment would involve
an independent renormalization of the quenched
variables. However, for the questions we are in-
terested in, we have chosen a simplified representa-
tion in which only the spin variables appear explicit-
ly in the RG transformation. Spins are assigned to
all sites, but spins on vacancies are assigned +1
with equal probability. The presence of a quenched
vacancy is then represented by a spin that has zero
correlations with the rest of the lattice. Applying a
majority-rule transformation with five-spin blocks
allows the system to renormalize to a fixed point
with or without residual quenched impurities.

Critical exponents are obtained from the eigen-
values of the matrix

y g~ (n) ill(. ( —t) (2)

where K " is the coupling constant corresponding

'

g[ g(n) ]
[ ( g ( ))n] [ (g (n —t) ) ]

to the operator S ") on the nth RG transformation.
T & is found from the chain-rule equation

g[(g(n) ) ] g[(g(n) ) ]
T

gK (n —1) ~& gK (n)
p a

where the square brackets indicate the average over
the quenched variables and

g[(g(n) ) ]

gK (n —1)
P

[(g(n)g(n —t) ) (g(n) ) (g(n —t)
) ] (4)

Before applying the MCRG technique outlined
above, we need to accurately determine the critical
temperature T, . Therefore, we locate T, by carry-
ing out MC simulations on two different lattices
which differ in linear dimension by the RG scale
factor b. ' By applying an RG transformation to the
larger lattice, we then have two lattices of the same
size; the differences in the correlation functions of
these lattices correspond to differences between the
original and renormalized Hamiltonians. Changes
in the coupling constants of the original Hamiltoni-
an needed to make the correlation functions equal
are determined by solving the equation

(S)

where the subscripts L and 5 refer to the "large"
and "small" lattices. The derivatives are calculated
as in Eq. (4). This procedure becomes more sensi-
tive to relevant perturbations (and insensitive to ir-
relevant ones) as n increases. Since the original
Baxter Hamiltonian involves two couplings, we fix
the four-spin coupling K4 and vary the two-spin
coupling K2 on the basis of the changes predicted
by Eq. (5). Table I illustrates the predicted changes
in the two-spin coupling K2 for one negative and
two positive values of K4 with x=0.125. Predic-

tions are shown for several values of K2 in the vi-
cinity of the critical coupling K2, . As can be seen,
these predictions for K2, both above and below
K2, point back to the critical value of K2.

Once T, has been accurately determined, the
MCRG method is used to estimate the critical ex-
ponents. Details of MCRG runs are given in Table
II, and Table III shows the exponent estimates from
the successive RG iterations for each of three
values of K4, along with the corresponding pure ex-

TABLE I. Predicted change in two-spin coupling 6E2(a) with L = 20JS for the large lattice and L =20 for the small
lattice. The numbers of MC steps/spin and quenchings used are 1.S&&10 MC steps/spin and Q =15 for L =2045 and
8 x 103 MC steps/spin and g = 40 for L = 20.

o. = —0.520 E4 = —0.200
sx,(') x,—sz,(')

o. = 0.372 E4 = 0.240
x, sr,&') x, —sx,(')

0. = 0.491 E4 = 0.360
@2 ~+2 +2 ~+2

0.6826
0.6862
0.6891

—0.0026
0.0033
0.0023

0.6852
0.6829
0.6868

0.3726
0.3752
0.3779

—0.0031
—0.0004

0.0025

0.3757
0.3756
0.3754

0.4162
0.4240
0.4272

—0.0058
—0.0001

0.00005

0.4220
0.4241
0.42715
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TABLE II. Data for MCRG calculations in Table III.
Impurities

Number of
MC steps/spin
per quenching

Number of
quenching s

L =20, all cases
K =2045, all cases
L =100

K4 = —0.2
K4= 0,24
K4= 0.36

8.0x 103

1.5 x 104

5.0x 104

6.0 x 104

6.0x 104

40
15

ponents. The exponents listed are average values
obtained from the analyses that use the three or
four largest numbers of couplings. For E4= —0.2
(n= —0.52 for the pure lattice) we find conver-
gence to the pure Baxter exponents. The conver-
gence, when compared with previous results, '8 has
been slowed down by the addition of impurities,
which indicates that the impure fixed point is far-
ther away than the corresponding pure one. Finite-
size effects are evident in the last iteration, which
corresponds to a 4x 4 lattice.

Exponent flows for both values of E4 ) 0
demonstrate that these impure critical exponents
are markedly different from pure exponent values!
Differences are quite evident in the thermal ex-
ponent yT and the crossover exponent yz. For

K4

FIG. 1. Schematic renormalization flow diagram.

K4 ——0.24 (a = 0.372 for the pure lattice) we obtain
yT =0.97 + 0.07 (v = 1.03 + 0.08) and ys = 1.75
+0.05, which compare with the exact values of

yT=1.228 and y~=1.807 for the pure model. For
K4 = 0.36 (n = 0.491 for the pure lattice) we get
yT=0.98+0.07 and ye=1.77 +0.04, and the corre-
sponding pure exponent values are yT=1.325 and
ye=1.831. The exponents do not converge as well
as for the negative-K4 (n ( 0 for the pure lattice)
case, which is understandable since Harris predicts
that new critical behavior will be seen only in a crit-
ical region in width x' . For x = 0.125 and

TABLE III. Eigenvalue exponent variation with iteration for impurity concentration x = 0.125.

K4 =-0.200 K =0.6862 K =0.2400 K =0.4240 K =0.3600 K =0.3752

Iteration Y
H M

Y
H M YS Y

H M

L=20 1.480
1.664

0.32 1.784 0.37
0.78 1.860 0.79

1.580
1.717

0.57 1.759
0.95 1.841

0.16 1.609
0.71 1,732

0.58 1.760
0.97 1.846

0.02
0.66

1
L=20&5

3

1.482
1.662
1.708

0.270 1.783 0.28
0.74 1.857 0.69
0.87 1.875 0.81

1.596
1.73/
1.736

0.540 1.768
0.92 1.84/
0.95 1.864

0.36 1.624
0.70 1.754
0.81 1.770

0.568 1.761
0.95 1.846
1.02 1.870

0.19
0.64
0.78

1
L=100

3
4

l.476
1.658
1.699
1.67

0.32
0.74
0.83
0.85

1.783 0.42
1.856 0.76
1.875 0.82
1.88 0.92

1.603
1.742
1.755
1.70

0.56
0.90
0.94
0.96

1.?65
1.845
1.857
1.83

0.42 J.632
0.71 1.768
0. 74 1.786
0.74 1.76

0.59
0.93
0.96
1.01

1.760
1.849
1.870
1.87

0.25
0.67
0.78
0.77

Pure 1.698 0.794 1.875 0.669 1.807

0=-0.520

1.228 1.875

0=0.372

1.103 1.831 1.325 1.875

Q=0. 491

1.200
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o. =0.372 this width is x' —0.004 as compared
with x' —0.014 for o. = 0.491 and the same x.

Our results substantiate the validity of the Harris
conjecture and are consistent with the schematic
RG flow diagram shown in Fig. 1. For K4( 0 (n ( 0) the impurities are irrelevant, so that
the pure fixed line also describes the model with
quenched impurities. The value of o, could change
slightly from the pure model with the same ratio of
KQK4, but this effect is too small for us to resolve.

For K4& 0 (u & 0), the RG trajectories flow
away from the pure Baxter fixed line and we see a
large change in the value of o. . Since the new criti-
cal exponents are equal to the pure Ising exponents
(within statistical errors) for the K4= 0.24 and 0.36
cases, it suggests that the pure Ising fixed point
(K4=0) describes all systems with quenched va-
cancies and K4 & 0 (n & 0), as indicated in Fig. 1.
It is interesting to note that the value of
yr=0. 98+0.07 which we obtain for positive K4
compares favorably with studies of the impure
Baxter-Wu model' ' and with impure Ising
results. 9 "
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