
VOLUME 53, NUMBER 7 PHYSICAL REVIEW LETTERS 13 AUGUST 1984

Finite-Temperature Phase Transitions in SU(3) Lattice Gauge Theory
with Dynamical, Light Fermions
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SU(3) lattice gauge theory with four light quark species is studied at finite temperature by
microcanonical compu'. er simulation techniques. An abrupt transition is found separating
the hadronic-matter and the quark-gluon-plasma phases. Measurements of the critical tem-
perature, latent heat, (PP), Wilson line, and Wilson-line correlation function are presented
and are compared to earlier calculations which ignored fermion vacuum polarization.
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The study, both theoretical and experimental, of
quantum chromodynamics in extreme environ-
ments is attracting ever-increasing interest. Among
the many reasons for this are these: (1) In hot and
baryon-rich environments the confining and chiral-
symmetry-breaking properties of quantum chromo-
dynamics should disappear. (2) Models of cosmol-
ogy use as input the sequence and character of the
phase transitions which a gauge theory shows. (3)
There are plans for creating extreme environments
in the laboratory through the construction of a
heavy-ion collider.

The quantitative study of the deconfining and
chiral-symmetry —restoring transitions in quantum

chrom odynamics has been done earlier in the
"quenched" approximation which neglects fermion
vacuum polarization. ' The results were very
intriguing. At a temperature T, = 200 MeV the
system passes from a state of confined hadronic
matter with dynamically generated quark masses
(chiral-symmetry breaking) to a state of a quark-
gluon plasma with vanishing quark masses. The
transition was first order with a large latent heat per
unit volume, 1.50+ 0.50 GeV/fm .

However, theorists have questioned the rele-

vance of quenched calculations to quantum chro-
modynamics, which has an almost massless (m = 5
MeV) isodoublet of quarks and a light (m, =100
MeV) strange quark, in addition to several heavy
flavors. Because of vacuum polarization it was sug-
gested that the transition between confined quarks
(ordinary hadrons) and screened quarks (quark-
gluon plasma) might not be abrupt. Model studies4
and series expansions support this view. It is clear,
however, that the chiral-symmetry-restoring transi-
tion must persist in the presence of vacuum polari-
zation, but its impact on the bulk thermodynamics
of the system has not been estimable in the past.

In this Letter we report a large-scale lattice
gauge-theory simulation which addresses these
physics issues. The inclusion of light dynamical fer-
mions into computer simulations will be achieved
here by use of the microcanonical formalism of Po-
lonyi and co-workers. As discussed there, this
method has several advantages over series expan-
sions and pseudofermion stochastic techniques.
The description of the microcanonical method fol-
lows. Consider the classical system described by
the coordinates U„(n)and Q (n) whose Lagrangian
Is

L = —,
' X„„trU„(n)PU„(n)—P,„S[U]+Q3 [U]A [U]Q — $(02„Q (n)Q(n),

where S[U] is Wilson's action for SU(3) lattice gauge theory and A [U] is the hopping matrix of staggered
fermions. The matrix P is a projection operator, P = diag(1, 1, 0). One can show that the thermal average
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of an observable 8[U] calculated at temperature T by the Gibb's canonical partition function

Z= D UDpD DPexp —T '0,
0= —,

' X„p„(n)Pp„(n)+l3;„$[U]+P(A[U]A [U]) 'P +Ql X„Q(n)Q(n),

reproduces the expectation value,

D U detA U ~e ~''OU
(e[U]) =

D U detA U ~e

(2a)

(2b)

(2c)

where the power y which determines the number of fermion species is 2 for complex A [U] with real deter-
minant. In those cases where A [U] is the sum of the identity and an anti-Hermitian nearest-neighbor hop-
ping matrix, A [U]A [U] only connects sites with the same parity (=x+y+z+t[mod2]). The deter-
minant in Eq. (2c) is then the product of the determinants of A [U]A [U] restricted to even or odd sites:
detA [U]A [U]=det(A [U]A [U]),„,„det(A [U]A [U]),dd. Therefore, setting P(n) =0 on even sites
forces det(A [U]A [U]),„,„

to unity. Because of translation invariance we can interpret this thinning of the
fermion degrees of freedom as the reduction of y=2 to y=1. Applying this scheme to four-dimensional
staggered fermions we have Nf = 8 or 4 flavors for y = 2 or y = 1, respectively.

To simulate the classical system of Eq. (1) we follow the molecular dynamics method. Under the assump-
tion that the classical system is ergodic, the time average

1 T
{ii[Ul),= lim —J dwe[U(v)l

T o

is equivalent to the microcanonical average which itself agrees with the canonical average Eq. (2c) up to cal-
culable power-behaved corrections V, V = volume of the four-dimensional lattice. In order to obtain the
time evolution of the classical system we discretize the time 7k = khan and solve the resulting Euler-Lagrange
equations,

U(k+{) 2U(k) U(k —1) +2(/it )2, 0$ [ U ] + Qt(k) ()A [U ]A [U ] Q(k)
BU BU

At[U«+»]A [U«+»]Q«+')=At[U«)]A [U«)]Q«) (gr)~2Q«+&/2)

(3a)

(3b)

am = 0.10 and 0.08 were used (a = lattice spacing).
The simulations were done by generating a ther-

malized field configuration at large P=6/g and
then increasing the kinetic energy of the micro-
canonical ensemble in order to decrease the P of
the system and probe the critical region P= 5.0.
Typically 5000 steps with 4v =0.01 were taken at
each P, and matrix elements were measured every
50 or 100 steps. All the matrix elements were
quickly convergent and required far fewer sweeps
than we ran except for the gluonic internal energy.
This matrix element showed long-wavelength oscil-
lations versus step number (waves of length 500
steps were typical) with amplitudes of 50% of the
mean value in the quark-gluon phase, The origin of
these long-time correlations are not known to us,
but they may have physical significance (unexpect-

numerically. The conjugate-gradient method was used to solve Eq. (3b) for Q("+'). And finally, the cou-
pling p = 6/gz =P;„/Tof the (3+1)-dimensional field theory is determined by the equipartition theorem,

,'N T= ( —,
' X„„—U„(n)PU„(n)+QA [U]A [U]Q)„ (4)

where N is the number of noncyclic coordinates
which is N„«,&& (28 + 3Nf/4) in our case.

Now we turn to our results. We simulated SU(3)
gauge theory with four (Nf = 4) light quark flavors.
The lattice was chosen asymmetric, 4x 8, to simu-
late finite temperature. Lattices of this size were
used extensively in quenched studies and yielded
physical results which have been modified by less
than 20% as larger lattices have been studied.
Another technical point in the simulation method is
the fact that a bare fermion mass term must be ad-
ded to the theory's Lagrangian, and the full theory
must be solved for several m values. The chiral
limit (m 0) of matrix elements is obtained by
extrapolation. Recall from Kogut et al. ' that for a
given P = 6/g and .lattice volume, there is a
minimum rn value below which finite-size effects
become important. In this study mass values of
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(4 flavors),

and the T/AL axis in the figure results. In terms of
AMs, Eq. (5) corresponds to'2

T,/AMs= 3.65 + 0.30 (4 flavors). (6a)

It is interesting to compare these results with
those of earlier quenched simulations. There it was
found that3

T,/AMs = 2.77 + 0.30 (quenched),

and the transition was first order with a latent heat
which came within 75%-85'lo of saturating the
Stefan-Boltzmann limit. Including four light fer-
mions we see that T, has increased in units of AMs

by roughly 30% and the latent heat per T has in-
creased roughly 25%. Our computer simulation

ed low-mass modes?).
In Fig. 1 we show the resulting curve of the inter-

nal energy density e/T versus temperature for a
quark mass of am =0.08. We note the dramatic
rise of e/T from zero to a value consistent with the
free-field Stefan-Boltzmann result expected on a
4x8 lattice. " This rise occurs within a tempera-
ture interval of T,/AL = 280+ 10. The temperature
axis on this figure was obtained from our data by
use of asymptotic freedom. In particular, the tem-
poral lattice size N, , the lattice spacing a, and the
physical temperature are related by aT = N, '. The
lattice spacing a can be eliminated by use of asymp-
totic freedom,

' 23 1/625

P exp( —4n 2P/25)

data for the internal energy did not show a strong
dependence on the fermion bare mass for
am = 0.10 and 0.08. Since the physical temperature
T is given by aT =N, '=0.25 and since am =0.10
or 0.08, the fermion masses are m/T = 0.40 or 0.32
in physical units. In Fig. 2 we show the fermionic
and gluonic contributions to the internal energy at
the larger fermion mass am =0.10 as a function of
P=6/g for comparison. It is intriguing that the
gluonic internal energy exceeds the Stefan-
Boltzmann value for P values between 5.00 and
7.00.

Finally consider (Qf) and the Wilson line. Re-
call that (Pp), the order parameter for chiral sym-
metry breaking, and the Wilson line, the exponen-
tial of minus the free energy of a static quark, are
both measures of dynamical mass generation. In
the quenched approximation the Wilson line van-
ishes identically in the confining phase, but with
fermion vacuum polarization one expects it to be
nonzero at all temperatures because of screening.
In Fig. 3 we show the zero-mass-extrapolation'
results for both (PP) and the Wilson line. Note
that the Wilson line turns on exactly where the
internal energy did, and exactly where (Pp) van-
ishes. These relationships suggest that chiral sym-
metry restoration is responsible for our results.

Our measurements of the Wilson-line correlation
function showed linear confinement below the tran-
sition and Debye screening above it and will be dis-
cussed at length elsewhere.

Our results are certainly not precise enough to
distinguish rapid crossover dynamics from real
first-order transitions. We plan, ho~ever, to use
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FIG. 1. Internal energy vs temperature. The fermion
mass is am =0.08. A characteristic error bar is shown.
The Stefan-Soltzmann line for a 4X8' lattice is taken
from Ref. 11.
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FIG. 2. Gluonic and fermionic internal energies (fol-
lowing the notation of Ref. 3) vs P = 6/g2 for a bare fer-
mion mass of am = 0.10. The gluonic (fermionic) inter-
nal energy is uncertain by + 50'/o ( + 10%).
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FIG. 3. (gP) and the Wilson line (WL) vs tempera-
ture. The curves are the results of a mass 0 extrapo-
lation. Error bars are at the several percent level.

microcanonical methods of investigating metastable
states' to clarify this point. We will also measure
hadron masses in the four-flavor theory so that the
scale of T, can be established more precisely (AMs
is not known accurately). In this study we have as-
sumed that asymptotic freedom is relevant to our
data. The position and size of a scaling window in
simulations which include light fermions has yet to
be determined. Only after asymptotic freedom is
verified and after several mass scales in addition to
T, are determined in a given simulation shall we be
able to quote physical quantities in gigaelectronvolt
units with confidence.
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