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The lattice CP~ ' model at nonzero 0 is analyzed by a strong-coupling expansion. At
0 = m, CP is spontaneously broken and the theory ceases to confine. The 8 dependence of
several quantities is computed and the correlation length is shown to increase with 8. Most
of the results apply not only to the CPn ' model (for all values of N) but to other two-

dimensional nonlinear 0- models as well.
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The analysis of the CP~ ' model at large W'
showed that its qualitative behavior as a function of
0 is similar to that of the massive Schwinger model
at weak coupling. 3 In particular, a cusp in the vacu-
um energy at 0 = m signals the spontaneous break-
ing of CP. Furthermore, the model does not con-
fine at this point and the quarks are liberated as
"half asymptotic states. " This behavior is expect-
ed to persist for finite values of W including %= 2
where the model becomes identical to the O(3) o.

model. Here we analyze the finite-N model on a
Euclidean lattice. Some of the qualitative results
which we will find have also been obtained in a
Hamiltonian formulation. 4

The continuum Lagrangian of the model' is

I. = NPi(e„+ e„)zI',

where z (x) are complex unit vectors defined on the
sites of the lattice and the gauge field U„(x)
=exp[i(t)„(x)] is an element of U(1) defined on
the links. The 0 term is somewhat less trivial be-
cause, strictly speaking, there is no topology on the
lattice. However, following Berg and Luscher, we
demand that the topological charge on the lattice
has the correct continuum limit and is an integer
for every lattice configuration (in a finite volume
with periodic boundary conditions). The second re-
quirement guarantees that 0 effects will not be seen
in weak-coupling perturbation theory. Definitions
obeying these requirements were given by Berg and
Luscher6 and Polonyi. 7 Here, motivated by Eq. (2),
we will be using a similar, but not identical, defini-
tion based on the dummy gauge field U„(x). We
define the topological charge density by

where z is an X-component complex unit vector
(z' z= 1). The auxiliary gauge field A„may, of
course, be eliminated by its equation of motion. A
8 term is most easily written in terms of A„as

q(x) = lnU~(x)
1

277 I

P, (x), sr ~ —y, ( 7r, (4)

(2)i (0/27r )e„„(1„A„

S= —NPX„„[z'(x)U„(x)z(x+[[t,)+ c c.],

(6)

where U~ = exp(i(t)~) is the oriented product of U

Several different formulations of the model on around the plaquette. Similar definitions in the
the lattice have been given. It is convenient to context of the Schwinger model were given by Isra-

keep the gauge invariance manifest and to use the el and Nappi. Clearly, q(x) has the correct contin-

lattice action uum limit. Naively, Q=x„q(x) =0 because the
link angles cancel in pairs, but because of the
branch ambiguity in (t)~ and the prescription

(3) 17 (t)t) ( 7r Q = g„q (X) = integer. The COm-

plete lattice action with 0 is

S= —PNX„„[z"(x) U„(x)z(x+ p, )+c.c.] —i (0/20r) X„g~(x).
The 0 dependence of various quantities cannot be seen in a weak-coupling (large-p) expansion. Monte

Carlo techniques face the difficulty that the action is not real and e'~0 has to be considered as a part of the
observable. %e therefore turn to a strong-coupling expansion.

In the strong-coupling regime, the configurations are not smooth and all remnant of the topology may be
lost. It is therefore surprising that even in this regime, we will find all the qualitative effects that the model
is expected to exhibit in the continuum limit.

At zeroth order in the strong-coupling expansion (p =0) we should consider the partition function

z(0, 0=0) =exp[ —vr(00=0)]= J rtdP„(x)(2x) exp[i(, / 02)xXtP (x))
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( V is the number of sites in the lattice). We first
consider the system with free-boundary conditions.
Picking an axial gauge, we can integrate link after
link from the boundary. The value of each integral
is independent of the other links and the partition
function becomes

Z(H, P =0) = exp[ —VF(H, P = 0) ]

CP is either explicitly or spontaneously broken,
(W) A (W), but (W)e=(W) e. The compu-
tation is similar to that of the free energy and we
obtain

'A

( W)=; ( W )=, (11)
t

= [(2/0)sin2ti] .

For ~0~ ~ 2m we find

F(H, P =0) = —In[(2/0)sin —,'0]. (8) F2= ln

where 3 is the area enclosed by the loop. For sim-

plicity we take 3 to be even and we find two dif-
ferent string tensions,

2' —0 2~+0
(r) =ln (12)

F(e, P=0) = —In[(2/0) sin —'&], ' (9)
,F(H+ 2mk, P = 0), otherwise.

The cusp at 8 = vr is now obvious.
The expectation value of the topological charge is

easily found:

(Q)e, p-o BF(H, P =0)
(q)ep o

= i (& ' -,
' cot-,' ii-).

The nonzero expectation value of q at 0 = m-

((q) e +
p o= + i/m ) shows that CP is spon-

taneously broken there. Note that the point 9 =m
does not separate between two different phases;
0 = m+ is in the same phase as 0 = m

There may be some interest in the model at
imaginary 0.' For large imaginary 0 one finds
F(8=i~,P=O) = —i0/2 and (q), , p o= —,'.
The topological charge becomes maximal in this
limit and there is an "exceptional configuration"
on every plaquette.

It is easy to compute the expectation value of the
Wilson loop, ( W), at P= 0. Since for nonzero 0,

(10)

r

F(H, P) = —ln —sin ——2NP +NP2 . 0 4 X
0 2 N+1

With periodic boundary conditions Q is always an
integer and F(H, P = 0) must be a periodic function.
In the infinite-volume limit its power-series expan-
sion is independent of the boundary conditions and
it is identical to that of Eq. (8). The only effect of
the periodic boundary conditions is to make F(0, P
= 0) a periodic function. We conclude that

Note that ( W) e
= 1 [o.t (m) = 0] and the theory

does not confine at this point. The two different
Wilson loops and, correspondingly, the two dif-
ferent string tensions have a simple physical inter-
pretation in a Hamiltonian description. They
represent the confining force between a quark (z)
and an antiquark (z') in two different configura-
tions. The quark is to the right of the antiquark or
it is to its left. At 0=m, o-~=0 and o-2=ln3. The
force in one configuration is sti11 nonzero but the
quark and the antiquark in the other configuration
do not "feel" any force between them and they are
liberated as "half-asymptotic states. "3 The fact that
o.t(7r) vanishes is not accidental here. It is related
to the vacuum degeneracy at this point. The func-
tional integral with the loop is identical to the func-
tional integral without the loop but with the replace-
ment 0 0 —2m on all the plaquettes surrounded
by the loop. It is only at 0 = m that the inside of the
loop (8 = —m) has the same free energy as the out-
side. The loop surrounds a region of space in one
vacuum inside the other vacuum. Since they are
degenerate no area law can be found and the string
tension vanishes. This interpretation is the Eu-
clidean version of the deconfinement mechanism of
Ref. 3.

When P is nonzero but small, we can use stan-
dard strong-coupling techniques. We treat the 0
dynamics exactly and expand only in P. Clearly,
the nonanalyticity at 0 = ~ cannot be removed by
small P corrections. It is easy to find

20
, +O(P')4~' —e'

(15)

The Wilson loop cannot exhibit an area law for nonzero P; the dynamical quarks screen it. Indeed, a
straightforward computation yields

( W)e&„—exp} —P[lnP '+O(P )]}; ( W )e& —expI —P[lnP '+ O(P )]}, (14)

( W)e „—exp( —P[ ", NP + O(Ps)]}, —
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(16)

In the strong-coupling limit

NP 2NPz 2PzNf 'P' N(N+1) N+1 "N+1 "(N+1)(N+2)

where P is the perimeter of the loop.
Another object of interest is the mass gap m (0,p). It can be found by computing the correlation function

X„(z,"z (x 0)z,'z (O,L,)) =f(&,P,L)5,&, for a & b.

I 'k —1

+ 4P X (I. —k+ 1)
k

'k
+ + o(p')

Hence

m(e, P) = lim, -„l. 'f(e, P-,I.)

The apparent singularity in the O(pz) term at
m(8„p) is an artifact of the expansion in p. A
more detailed analysis at 0 =0, leads to a contribu-
tion o(IpI)—

m(8=8„p)

Np' Ipl N+1 + O(p')

and m(8, p) is smooth (there is no level crossing)
at 0 = 0,. At this point, the repulsive contact in-
teraction among the z particles is equal to the string
tension, and as a result, m (8,p) exhibits a cross-
over. The z -z' contact term is not universal and
hence, this crossover should, presumably, disappear
in the continuum limit. Similar phenomena occur
near 0=m. At this point the quarks are liberated
and m, = m, = lnp '+ O(Ip I). It is important to
note that for fixed p, I (0,p) decreases with 0, or
equivalently, the correlation length g = I/m in-
creases with H. This fact agrees with theoretical ex-
pectations" and numerical simulations.

In conclusion, 0 has been introduced into a lattice
version of the CP ' model in a simple manner
that enables a straightforward strong-coupling ex-
pansion. 0 was treated exactly and the only small
expansion parameter was p. We observed a cusp in
the free energy at 0 = m, spontaneous breaking of
CP, and quark liberation as "half asymptotic
states" at that point, and the fact that the correla-
tion length increases with H. These effects are ex-
pected (although they have not yet been proven) in

the continuum limit. The fact that we found them
in the strong-coupling region may serve as another
indication that these expectations are reasonable.

Clearly, we cannot prove that these phenomena
persist all the way to the continuum limit. %e can
only point out that since the strong-coupling expan-
sion has a finite radius of convergence'z [which can
easily be shown by comparing the diagrams with
those of the 0(2N) model], the structure at 8 = m

persists for at least a finite range of p. Moreover,
the absence of a phase transition at 0 = 0 for any p
makes it plausible that qualitative features of the
strong-coupling physics are present in the continu-
um. Furthermore, the large Ã and the strong-
coupling limits of this lattice action are known not
to commute. Yet, the large-%limit at the continu-
um and the finite-N strong-coupling limit exhibit
similar effects at 0=m. It seems, therefore, likely
that these phenomena occur for all values of N at
all couplings including p ~—the continuum lim-
it.

So far we considered the CP ' model. Howev-
er, the method is applicable for any two-di-
mensional model for which the topological term can
be written in terms of a (possibly dummy) U(1)
gauge field. For instance, a nonlinear 0- model
based on the manifold U(2N)/U(N) x U(N) '3 can
be analyzed in a similar way. The p=0 results are
clearly independent of the details of the model and
are, therefore, identical to the results found here.
In particular, at least for p=0, the N 0 limit of
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this model, which may be relevant to the quantized
Hall effect, ' is smooth and has all the features dis-
cussed here.
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