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Effect of Crystal-Field Anisotropy on Irreversible Phenomena in Spin-Glasses
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We study the angular dependence of the field-cooled susceptibility Xeq of Fe,TiOs, a spin-
glass with a strong uniaxial anisotropy, by rotating the measuring field H with respect to the
cooling field H.. Unlike the | behavior found in ‘classical spin-glasses (i) the anisotropy in Xeq
depends on the direction of H and (ii) the irreversible magnetization does not rotate with H.
The de Almeida-Thouless line is identified via the field and temperature dependence of the

anisotropy in Xeq.

PACS numbers: 75.30.Gw, 75.30.Kz

Experimental study of anisotropy in spin-glasses
has developed in two independent directions. In
one, attention is focused on the magnetic properties
of spin-glasses which, as a result of crystal-field an-
isotropy may exhibit susceptibility cusps only in cer-
tain lattice directions, thus giving rise to realization
of Ising or XY spin-glass ordering.!"® The other
direction deals with the macroscopic anisotropy
which couples to the remanent magnetization and is
independent of crystallographic orientation. The
nature of this macroscopic anisotropy has been ex-
tensively studied in metallic spin-glasses’~!! and it
has been concluded that it is dominated by a direc-
tional (27 periodic) contribution arising from
Dzyaloshinsky-Moryia (DM) interactions.'? The
effect of other anisotropic forces, such as crystal-
field interactions, on the remanent susceptibility
has not been explored. It is the purpose of the
present work to report on a comprehensive experi-
mental study of the anisotropic nature of irreversi-
ble phenomena in a spin-glass system with a strong
crystalline anisotropy.

The system under study is a single crystal of the
insulator Fe,TiOs which exhibits a strong uniaxial
anisotropy in its low-field ac susceptibility!: A
sharp cusp is observed along the ¢ orthorhombic
axis at 7, =53 K whereas along the a and b axes a
smooth paramagnetic behavior is found above and
below T,. Since no indication of long-range order
was found in neutron diffraction and other mea-
surements,! it was concluded that Fe,TiOs is a
spin-glass with anisotropic characteristics. The
spin-glass nature has been attributed to frustration
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resulting from random distribution of Fe3* and
Ti** ions on the (8f) and (4c¢) sites; anisotropy has
been attributed to crystal fields. In the present
work we explore the anisotropy in the field-cooled
susceptibility of Fe,TiOs by rotating the magnetic
field H with respect to the cooling field ﬁc. Our
study reveals several features which are very dif-
ferent from those observed in classical spin-
glasses.””!! (i) The susceptibility exhibits a -
periodic anisotropy which depends strongly on the
direction of the cooling field with respect to the ¢
axis. (ii) The irreversible part of the magnetization
is fixed in the c direction during rotation of H but
w-periodic viscosity phenomena, resulting from the
rotation, are observed. (iii) The anisotropy in the
susceptibility persists well above T, but contribu-
tions from irreversible susceptibility, which depend
strongly on field and temperature, vanish at the de
Almeida-Thouless line!* T, (H).

Anisotropic properties of Fe,TiOs have been in-
vestigated via measurements of the magnetization
on a vibrating-sample magnetometer (VSM) with a
2w -rotating sample holder. The sample is cooled in
a field to the measuring temperature. With the
field on and temperature stabilized to better than
0.1 K, the sample is rotated by ¢ relative to the
magnetic field. (In the sample frame of reference,
¢ is the angle between the cooling field H and the
measuring field H.) We then measure the magneti-
zation as a function of ¢. The total sample magnet-
ization is customarily written as

ﬁ=;<"l_‘l’+l§;1i". (1)
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where X - H and IVI“, are the reversible and irreversi-
ble magnetization, respectively. We stress two
features of Eq. (1) which are relevant to our study.
&a) The susceptibility X is usually isotropic, i.e.,
Xag=X38,g, but for Fe,TiOs it exhibits uniaxial an-
isotropy which dominates the anisotropic behavior.
(b) The irreversible magnetization M,,, is not inter-
changeable with the remanent magnetization My
obtained after switching off the field. In fact, we
find (Fig. 1, inset) that for a constant temperature,
Mg (H) saturates whereas M, (H) vanishes in
strong enough fields.

Figure 1 exhibits the measured magnetization M
as a function of ¢ for a cooling field H, =2 kOe and
temperature 4.2 K. In Fig. 1(a) the cooling field
was applied along the ¢ axis (¢ =0) and then ¢ was
changed at a rate of 0.2 rpm. Several features
characterize M (¢). First, the measured magnetiza-
tion increases when the field is rotated from ¢ =0 in
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FIG. 1. Angular dependence of the magnetization
measured after cooling the sample in 2 kOe. (a) H, is
along a spin-glass axis (¢=0°). (b) H, is along a
paramagnetic axis (¢ = —90°). The solid arrows point to
the value of the magnetization after the cooling process.
The light arrows on the solid and broken lines indicate
the order of measurements. Note the ~ 7/4 segments
for which the broken line (data taken later) is above and
below the solid line. Inset: Remanent and irreversible
magnetization as a function of field for 4.2 K (closed cir-
cles), 20 K (closed triangles), 32 K (open circles), and 40
K (open triangles).

either sense. Second, M (¢) reaches a pronounced
minimum for ¢ =180°. Finally, m-periodic, time-
dependent phenomenon are observed. At lower
rates of revolutions relaxational effects seem to be
less and less important and the two curves tend to
coincide.

The general shape of M (¢) is very different
when the cooling field is applied perpendicular to
the ¢ axis (¢ = —90°) as in Fig. 1(b). Now M (¢)
has a w shape with mini_rpa and maxima which cor-
respond to states with H along the ¢ and a (or b)
axes, respectively. Note that M (¢) decreases when
the field is rotated from ¢ = —90° in either sense.
With a rate of 0.2 rpm we observe, as in the previ-
ous case, a w-periodic viscosity which disappears at
slower revolution rates.

In Fig. 2 we exhibit M (¢) data for H,=35 kOe
parallel to the ¢ axis (¢ =0) after a cooling process
to temperature T (4.2 K< T <47 K). The effect
of temperature on the general shape of M (¢) is
twofold. First, the initial slope (dM/d¢ at ¢ =0) is
positive at low temperature, decreases with tem-
perature to zero at 7 =30 K, and then turns to be
negative at higher temperatures. Second, and the
most important effect, the depth of the minimum
around ¢ = 180° decreases gradually with tempera-
ture. Around 30 K, the minimum is replaced by a
maximum which increases gradually until M (0)
=M (180) and a cos’$ shape is observed. This fi-
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FIG. 2. Angular dependence of the magnetization
measured after cooling the sample in a field H.=5 kOe
to temperature 7 (4 K< T <47 K). FIC is along a spin-
glass axis (¢ =0°). Inset: M, (T) for H.=5 kOe (left)
and the de Almeida-Thouless line for Fe,TiOs (right).
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nal shape persists up to at least 7= 2T7,.

We turn now to discuss the gross features of Figs.
1(a) and 2, pointing out the main factors which af-
fect M (¢) for H, along the c axis. The reversible
anisotropic susceptibility of Fe,TiOs has two com-
ponents, X, and X, which are the susceptibilities
measured parallel and perpendicular to the ¢ axis,
respectively. The magnetization, measured along the
applied field H, is

M=X,H+ (X, —X,)H cos’p + M, cosp, (2)

where we take ¢ =0 to be along the ¢ axis. The an-
gular dependence of M is thus determined by two
factors: the irreversible magnetization M, and the
susceptibility difference X, —X,. M,,, resulting
from the figld-cooling process, is parallel and an-
tiparallel to H for ¢ =0° and ¢ = 180°, respectively.
It is therefore apparent that M (0)— M (180)
=2M,.. The changes in the depth of the minima
therefore reflect the temperature dependence of
M;;,;. On the other hand, the initial slope reflects
the temperature dependence of the anisotropy in
the reversible susceptibility. At low temperature
X, < X_, whereas above 30 K X, > X,. Apparent-
ly, this affects the sign of the cos’¢ term and there-
fore the initial slope of M (¢).

Equation (2) provides a basis for a quantitative
analysis of the experimental data. The raw data
were least-squares fitted by Eq. (2) with X, X,
and M, as parameters. The parameters X, (H,T)
and X, (H,T) obtained from this procedure are con-
sistent with our measurements of the susceptibility
along the a (or b) and c axes, respectively. In-
teresting results are obtained for M ,(H,T). For a
constant field M. (T) decreases with temperature
(Fig. 2, inset) and vanishes at a temperature T, (H)
above which M ($) exhibits pure cos’¢ behavior.
Similarly, for constant temperature M, (H) in-
creases, reaches a maximum, and then decreases
quite sharply to zero (Fig. 1, inset). These results
can be best understood in terms of the de
Almeida-Thouless (AT) line!? in the H-T phase di-
agram for spin-glasses. For Ising spin-glasses the
AT line is a line of phase transitions from spin-glass
to paramagnetism which are characterized by the
vanishing of irreversible responses.!* The irreversi-
ble characteristics of Fe,TiOs are reflected in
M, (H,T). We therefore take M,,= 0 as an experi-
mental criterion for being above the AT line and by
extrapolating M, (T) to zero (left-hand inset, Fig.
2), we are able to identify T,(H). The results of
this extrapolation procedure are summarized in Fig.
2 (right-hand inset) with an AT-like line for
Fe,TiOs for which we find a critical exponent of
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1.6 £ 0.1 in accordance with the theoretical predic-
tions. We note that strikingly similar AT lines are
found experimentally for isotropic systems.!> For
those systems theory!” predicts a very different crit-
ical line; the observed AT line has been interpret-
ed’ as a crossover line from a weak (and undetect-
able) to a strong (and measureable) longitudinal ir-
reversible response. Strong anisotropy, however, is
expected to induce Ising-like phase transitions, the
loci of which are described by the AT line.*® The
observed AT line in Fe,TiOs is therefore consistent
with theoretical predictions for Ising-like spin-
glasses.

In the least-squares analysis of Eq. (2) we have
also considered the possibility of a fourth parame-
ter, namely, the angle 6 which describes a rigid ro-
tation of M;,, with respect to H.. For such rigid ro-
tations, which have been demonstrated experimen-
tally in classical spin-glasses,”'!'!” we should re-
place the last term in Eq. (2) by M, cos(¢—8),
where 6 is a function of ¢ and of the ratio
x =K/HM,,, with K the anisotropic energy. Our
least-squares analysis, however, yields § =0, name-
ly, that M, is fixed in the c direction. The origin of
this behavior lies in the behavior of the reversible
susceptibility. For classical spin-glasses the reversi-
ble susceptibility is isotropic, i.e., spin-glass charac-
teristics are_not limited to certain lattice directions.
Therefore, M,,, can be (rigidly) rotated in any direc-
tion by overcoming the DM anisotropic energy. On
the other hand, for Fe,TiOs, because of anisotropic
crystal fields, reversible spin-glass characteristics
and, as a result, irreversible characteristics are limit-
ed to the c direction. The term ‘‘rigid rotation’’ is
therefore inapplicable for Fe,TiOs and M (¢) is
described as in Eq. (2).

The shape of M (¢) in a paramagnetic cooling
process [Fig. 1(b)] might be interpreted by use of
similar arguments as for the spin-glass cooling pro-
cess. Since H, is perpendicular to the c axis
(¢ =90°) no irreversible magnetization is induced
along this axis. From the spin-glass point of view
this is a zero-field—cooled (ZFC) process. Indeed, by
rotating the field to ¢ =0 we obtain the spin-glass
ZFC susceptibility value which, at 4.2 K, is smaller
than the paramagnetic susceptibility. As a result of
the ZFC process, irreversible contributions in Eq.
(2) are negligible and therefore M (¢) in Fig. 1(b)
is expected to exhibit cos’¢ behavior. The small
difference between the two minima which are ob-
served at low temperature [Fig. 1(b)] suggests, in
analogy with the behavior exhibited in Fig. 2, that
transverse freezing occurs in Fe,TiO5 despite the
absence of susceptibility anomaly (Fert et al.* have
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recently reached a similar conclusion via suscepti-
bility measurements on rare-earth—based alloys).
We cannot exclude, however, a different interpreta-
tion of the difference between the wells, namely,
that small isothermal irreversible magnetization
which is induced by the field as the field is rotated
tends to slightly distort the cos’$ shape.

Finally, we turn to discuss the viscosity phe-
nomena which are observed during rotation (Fig.
1). Time-dependent phenomena during rotations
in classical spin-glasses have been attributed!! to
redefinition of the direction of the anisotropy axis
with respect to H,. This is apparently not the case
for Fe,TiOs. We suggest a simple mechanism
which explains relaxation phenomena in the present
experiment. As we have discussed above, the ir-
reversible contribution to the magnetization in
Fe,TiOs remains fixed along the spin-glass axis,
parallel to H,.. Rigid rotg‘tions7‘1°'14 of M, due to
the rotation of the field H are therefore > prevented.
Instead, the rotation of H with respect to My, is effec-
tively equivalent to switching off and on the field along
the spin-glass axis. As a result, viscosity phenome-
na'® are induced; magnetization slowly decreases
during half the cycle and increases in the other half.
By slowing down the rate of the change in the effec-
tive field (slower revolution rate) the viscosity can
be practically eliminated.
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