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Self-Focusing-Induced Optical Turbulence
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Transverse outputs of an optical resonator are predicted to undergo transitions to tur-
bulence via three well-established scenarios. The instabilities are induced by self-focusing
nonlinearities. A bifurcation involving period doubling of invariant circles in a parameter re-
gion where attractors coexist is identified.

PACS numbers: 42.65.Jx, 05.40.+j

Spatiotemporal effects play an important role in
the transition to turbulence in low-aspect-ratio
fluids. ' In both Rayleigh-Benard convection and
Taylor-Couette flow, the onset of a new temporal
motion (e.g. , periodic to quasiperiodic motion) is
accompanied by the sudden appearance of sma11
periodic spatial scales in the fluid. A Fourier mode
expansion of the Navier-Stokes equations describ-
ing two-dimensional fiuid flow leads at the lowest
level of truncation to the well-known Lorenz equa-
tions. These latter equations undergo transitions to
chaos and Haken pointed out their close similarity
to the plane-wave single-mode laser equations.
However, it is not clear to what extent these severe-
ly truncated models mimic the true physical situa-
tion. While these models can exhibit complex bi-
furcation structure, the nature of the transition to
turbulence becomes sensitive to the level of trunca-
tion. 3

In the present work I address the problem of spa-
tiotemporal structures in a nonlinear optical
scenario. My model is an optical bistable ring reso-
nator [Fig. 1(a)] with an incident cw laser beam
having a Gaussian spatial profile (one transverse
dimension). The nonlinear medium consists of sa-
turable two-level atoms and I assume that it is
operating in the purely dispersive limit. A new
series of transitions to turbulence induced solely by
self-focusing effect is identified; under self-de-
focusing conditions or in the plane-wave model the
corresponding motion is at most periodic (period
two) over the same parameter range. Three typical
transition sequences observed in the above fluid ex-
periments are also predicted to occur in this optical
system. They are (1) period doubling to chaos, (2)
periodic-quasiperiodic breakdown of a two-torus to
a chaotic attractor (Ruelle-Takens scenario), and
(3) periodic-intermittent chaos (Pomeau scenario).
At the onset of quasiperiodic motion, a profound
change occurs in the transverse spatial profile; oscil-
latory spatial rings appear [Figs. 1(b) and 1(c)] that
are predominantly solitary waves of the nonlinear
wave equation [Eq. (1) below]. Exceptions to the
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FIG. l. (a) Schematic of a unidirectional passive ring
resonator containing a nonlinear (two-level atom) satur-
able medium of length Lt. (b) Period-two oscillation
near the center of the focused beam. (c) Spatial rings ap-
pear at the point of bifurcation from periodic to quasi-
periodic motion. Fresnel number F=5 and L =0.4 in
this and following figures.
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above transition sequences usually require the
coexistence of attractors in phase space (a situation
encountered in the optical model). Observation of
three incommensurate frequencies in the power
spectra of time series of radial fluid-velocity profiles
(evidence for motion on a three-torus in the phase
space) is typical of such behavior. This latter
behavior has recently been predicted to occur in an
optical scenario. 4 I predict that a bifurcation, 5 in-
volving period doubling of invariant circles, can oc-
cur in a region of parameter space where attractors
coexist. My study provides an example of how one
may extract pictures of few-dimensional bifurcating
attractors from an infinite-dimensional dissipative
dynamical system.

The idea is to look for asymptotic states of the
output field as either the input Gaussian peak am-
plitude a(0) or the "effective propagation length"
p ( = uoL t/5 ) of the nonlinear medium is varied.
As discussed by Moloney and co-workers, the
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dynamical behavior of the electromagnetic field in
the resonator is described by the following non-
linear evolution equation (in one transverse spatial
dimension):
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where o.p is the linear absorption coefficient charac-
terizing the medium, I.~ is the medium length
[L = Lt+ L2, see Fig. 1(a)], T= 1 —R is the mirror
intensity transmission coefficient, 5 is a normalized
frequency detuning, and I', the Fresnel number,
measures the importance of diffraction in the linear
problem. These and the other parameters are de-
fined in detail in Ref. 6. The calculational pro-
cedure is first to solve the nonlinear evolution
equation (1) over the "effective" nonlinear medi-
um length p with initial data a(y), then to substi-
tute into the right-hand side of Eq. (2), and to
determine new initial data for Eq. (1). The pro-
cedure is repeated until some asymptotic state is
reached.

This system is known to exhibit hysteresis and
dynamic instabilities and it has recently been
shown numerically that, when a high-Fresnel-
number self-focusing (p ) 0) beam switches to a
high-transmission state of the bistable system, spa-
tial ring structures evolve across the turned-on
beam. Subsequently, it was established that
these spatial rings were solitary waves of the non-
linear evolution equation (1) and fixed points of
the above infinite-dimensional map. 6~' In the dis-
cussion that follows, we confine our attention to in-
stabilities in a region where no hysteresis occurs;
physically this corresponds to a situation where, as a

and the resonator boundary conditions

G„(y, 0) = a (y) +Re'" G„~(y,p).
Equations (1) and (2) together constitute an
infinite-dimensional complex map in discrete time
where the index n counts the number of circuits of
the field around the resonator. G„(y, () is the nor-
malized intracavity field amplitude where y and (
refer respectively to the coordinates in the trans-
verse and propagation directions. These equations
are written in a convenient nondimensional form
through the following scaling:

function of increasing laser-input peak amplitude
a (0), the field-induced nonlinear index change in
the medium tunes the system away from a nearby
cavity-transmission peak. Complications arising
from interaction with nearby unstable (middle) or
stable (upper) branches of a hysteresis loop are
thereby avoided. If we ignore the second-
derivative term in Eq. (1) the plane-wave model of
dispersive optical bistability follows immediately
from Eqs. (1) and (2). This latter model has been
studied extensively in the literature. 9

The transverse outputs from the ring resonator
may be recorded by detecting the total integrated
output intensity or, alternatively, by using a small
aperture to record, say, the center beam intensity.
The latter technique, which will be assumed here, is
similar in spirit to the use of a Doppler probe to
record radial fluid-velocity profiles at a fixed spatial
location in a fluid. ' Figure 2 summarizes the type
of bifurcation sequences that arise as we vary either
a (0) (the peak input Gaussian amplitude) or p (the
"effective" nonlinear-medium length). Typical se-
quences involve a period-doubling bifurcation from
a stable fixed point to a periodic orbit, followed by a
Hopf bifurcation to an invariant circle. As noted
earlier, both the plane-wave model and the present
model under self-defocusing conditions exhibit ei-
ther a stable fixed point or a simple periodic motion
(period two) over the present parameter range of
interest. Motion on the invariant circle may be
quasiperiodic or may lock to some periodic orbit. If
we view the map as suspended in a flow of one
higher dimension, this latter motion may be inter-
preted as lying on an invariant two-torus (T2).
Breakdown of the motion on the invariant circle can
either be direct to a chaotic attractor'o (a typical
scenario in Fig. 2) or involve a period-doubling cas-
cade starting from a frequency-locked periodic orbit
on the invariant circle. 7 Along the line p = 8 in Fig.
2 we observe a direct transition from a period-two
orbit to an intermittent chaotic attractor. Of partic-
ular significance is the coexistence of attractors
over wide ranges of parameter space, a situation
also encountered in the plane-wave map. Iooss and
Langford" conjecture that interaction between
coexisting attractors can be responsible for higher
codimension bifurcations in many-dimensional
physical systems.

Figure 3 provides a geometric picture of the at-
tractors embedded in a three-dimensional phase
space as we progress through the bifurcation se-
quence on the line p = 8, 0.27 & ~a(0) ~2 & 0.32 in
Fig. 2. Discrete time records of the output bearn-
center amplitude are used to construct the embed-
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FIG. 2. Bifurcation diagram in (p, ia (0) i~) parameter

space. Typical bifurcation sequences involve S (stable)
T' (one-torus for flow or period-2 orbit) T~ (two-

torus or invariant circle) C (chaos) T'. To the
left, on the line p = 8, we have S T' IC (intermittant
chaos). Coexisting with the intermittant chaotic attractor
is the sequence T' T' 2T' (doubled torus or double
circle) C (chaos) shown in detail in Fig. 3. Along the
vertical line ia (0) i2=0.3, p ~ 7.5 bifurcation occurs
from a period-2 orbit directly to a frequency-locked
periodic orbit (L8).
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ded attractors. These pictures convey much more
information than time series or power spectra; for
example, we can easily distinguish between a high-
period orbit [Fig. 3(c)] and quasiperiodic motion
[Fig. 3(b)] on the invariant circles. The bifurcation
sequence starts at a simple period-two orbit (not
shown). A Hopf bifurcation leads to quasiperiodic
motion on the two invariant circles [Fig. 3(a)]. At
this point in the Ruelle-Takens scenario, one ~ould
expect the invariant circles to break down to a
chaotic attractor either directly ' or via a frequen-
cy locking on the circles followed by a period-
doubling cascade of the locked output. 7 Instead, the
Hopf bifurcation is followed closely by a period
doubling of the invariant circles. From a bifur-
cation-theory point of view, this latter behavior re-
quires that a complex-conjugate pair of eigenvalues
(of the linearization of the map [Eqs. (1) and (2)]]
cross the unit circle at an irrational angle (Hopf bi-
furcation) followed closely in parameter space by a
single eigenvalue crossing the unit circle along the
real negative axis (flip or period-doubling bifurca-
tion). The doubled circles break down to a chaotic
attractor by developing kinks and passing through a
complicated series of higher-period frequency lock-
ings (Fig. 4). Along the vertical line ia(0) i2=0.3
(7 ( p (8) the behavior is qualitatively similar ex-
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cept that the eigenvalues cross the unit circle at the
rational angle u = 2mm/q (m = l, q =4) leading
immediately to a frequency-locked output. Details
of this transition and the other behaviors depicted
in Fig. 2 will be discussed elsewhere.

In conclusion, I have identified new routes to op-
tical turbulence in a bistable ring resonator. The in-
stabilities are induced by self-focusing nonlineari-
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FIG. 4. Breakdown of the invariant circles along the
line p = 8 to a chaotic attractor involves the development
of kinks [(a) [a (0) ['= 0.31], high-period frequency
lockings [(b) ia(0)i =0.3151, and complicated fractai
curves [(c) ia(0) ['=0.321. The final chaotic attractor
consists of two pieces reflecting the original underlying
period-2 orbit.
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FIG. 3. Bifurcating attractors along the line p = 8 em-
bedded in a three-dimensional phase space are recon-
structed from discrete time series of the beam-center am-
plitude, (a) ia(0)i2=0.285, (b) ia(0)i =0.2875, (c)
I a (0) i'= 0.29, and (d) i a (0) i2 = 0.295. Doubling of the
invariant circles occurs on going from (a) to (b).
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ties and the optical analogs of the small spatial
scales observed in fluid experiments appear to be
transverse solitary waves of the nonlinear wave
equation (1). Three-dimensional phase-space por-
traits have been reconstructed from discrete time
records of the output beam-center amplitude show-
ing that although our system is formally infinite
dimensional, asymptotic motion lies on few-dimen-
sional attractors.
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