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Proton Resonance Scattering Confirms the Gaussian Statistics of Decay Amplitudes
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High-resolution proton-scattering experiments yield sets of resonance-decay amplitudes
with sometimes strong correlations between different decay channels. The joint probability
distribution of the amplitudes is shown to be compatible with the Gaussian one, if all experi-
ments are properly averaged and their finite-range-of-data error evaluated.

FACS numbers: 24.30.He, 24.60.—k, 25.40.Ep

In the statistical model of nuclear reactions, ' it
is assumed that the reduced partial-width ampli-
tudes y, measuring the decay of a resonance into
the channel c follow a Gaussian distribution cen-
tered at zero. This can be experimentally tested by
extracting the partial widths y, from reactions
proceeding through isolated resonances. The partial
widths should then follow a Porter-Thomas distri-
bution, a property which seems to be well estab-
lished from low-energy neutron scattering. A
large amount of data are also available from high-
resolution proton scattering. Again the partial
widths were found to be compatible with the
Porter- Thomas distribution.

In recent years, a more subtle test on the statis-
tics of the y, has become available, since a tech-
nique has been established' to measure relative
signs of the y's. It is now possible to study
the joint probability distribution of pairs of ampli-
tudes y„yd pertaining to different decay channels c
and d.

The first striking result is the appearance of large
correlations between y, and yd. This is not at vari-
ance with the statistical model if nonelastic direct
reactions are included that compete with the
compound-nuclear-resonance reactions. Direct re-
actions are known to induce such correlations. '
They do not contradict the assumed Gaussian distri-
bution of the y's either. Their existence says that
the covariance matrix of the y's is not necessarily
diagonal.

However, if the joint probability distribution of
the amplitudes y, is Gaussian, then any correlation
between y, and yd determines the correlation
between the widths y„yd. The above-mentioned
experiments can be used to check this relation and,
hence, provide a test on the Gaussian distribution
of the y's.

To be definite, let us introduce the normalized
coefficient r of correlation between the statistical
variables x and y:

r (x,y)

= (x —x)(y —y) l(x —x)'(y —y)'1 "'. (I)

Here, the bars denote averages over the statistical
ensemble. If now the distribution of the pair is
Gaussian then'

~'=N '(p '+4p ' 8+3p"). —(4)

Here, p is the expectation value r(y„yd) of the
amplitude correlation. - We may call cr the "finite
range of data" (FRD) error of the experiment.

The distribution of v has also been studied via
Monte Carlo simulations. ' The analytical result
(4) agrees with them. It should be stressed, howev-
er, that Eq. (4) takes care of the FRD error only,
but not of the experimental errors in the proper
sense, as, e.g. , accuracy of measured cross sections
and detection threshold for weak resonances. Their
influence on the distribution of the test quantity v
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In Table I, the experimental information is listed.
We indicate the measured reaction, the compound
nucleus, the number N of resonances analyzed, the
exit channels c and d in the channel-spin represen-
tation, and the experimental values r,„(y„yd) of
the amplitude correlation and r,„(y„yd) of the
width correlation as well as their ratio

+ = rex ('Vc 'Yd)&rex('y, '. rd).
From the statistical model one expects v to be uni-
ty. The experiments yield, however, important de-
viations from unity. That they are in fact compati-
ble with the Gaussian distribution and even may be
considered to confirm it shall be shown in the se-
quel.

The quantities r,„are constructed according to
Eq. (I) but with the ensemble averages

(x —x) (y —y),

etc. , replaced by the finite averages ((x —(x) )(y
—(y))), etc. , over the N resonances available
from experiment. The question is then this: What
is the variance a- of v, if N pairs of amplitudes

y„yd are drawn from a Gaussian ensemble? The
answer is given elsewhere, ' namely
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TABLE I. Experimental tests on the statistical distribution of correlated resonance-decay amplitudes y„yd. For joint
Gaussian distributions the test quantity v in column 9 is expected to be unity up to the error cr in column 10. These
results can be contracted into an overall test quantity V. See text.

Experiment Ref. Compound
Nucleus

Channel c Channel d N r (y, yd) r (y, yd)
2 2

ex c' d ex c' d

50C.(p, p )"C.(Z+)

Ti(p, p') Ti(2')

13
51 5

Nn, ~ states

7 V,
&

states49 5+

1=0,

1=2,

1=0,

1=2,

5
S=p

5
2
3

S=p
5s=
p
5s=
p
3s= -p

1=2,

1=2,

1=2,

1=2.

s=~ 383

5
S=p

5
S=p

3s=~ 45

5
S=p

5s=
p

0.62

0.58

-0.06

0.01

0.90

0.56

0.33

0.46

0.28

0.43

0.60

0.92

0.24

0.42

0.63

0.008 0.79

0.14

0.0004 1.3

Ca(p, p') Ca(2 ) 8 Sc, states45 5+
1=0, s= 5

51=0, s=~
31=2, s=~

1=2, s= 3

51=2, s=&

1=2, s= 5

53 0.22

0.72

0.06

0.67

0.27

-0.08

0.072 0.46

0.41

-0.045

48T. ( , )48T. (2+)

Ca(p, p') Ca(2')

Cr(p, p') Cr(2')

Ti(p, p') Ti(2 )

Fe(p, p' ) Fe(2 )

49 3+
Y, ~- states 1=0, s= 3

1=0, s= 3

1=2, s= 3

6 V, states49 3

17
57

Co, ~ states

l=l, s= 3

l=l, s= 3

1=0, s=—5

1=0, s=2

1=2, s= 3

9 Sc, states 1=1, s=45 3 3

9 Mn, states 1=1, s=51 3 3

1=2, s=

1=2, s=

1=2,

1=1, s=

1=1, s=

1=1, s=

1=2,

1=2,

1=2,

303

5

375

24

195

24
5

833

2
5
2

0.84

-0.51

-0.65

-0.66

0.34

-0.65

-0.58

0.36

0.60

0.36

0.43

0.85

0.15

0.23

0.17

0.79

0.51

0.28

0.31

3.0

1.9

2.9

2.5

0.66

0.16

0.71

0.46

0.32

0.33

0.79

0.60

2.9

0.95

0.56

0.33

0.29

0.68

has been investigated in Ref. 19, too. They were
not found very important for the relatively small
number of resonances (X = 50) investigated in a
typical experiment. Nevertheless, Eq. (4) gives
only the minimum error with which the results of
Refs. 6-9 and 11—13 are beset.

Note that cr grows beyond all limits if p ap-
proaches zero. This means that it is increasingly
difficult to verify relation (2) for decreasing correla-
tion.

We have estimated p from the average of r,„(y„
yd) and r,„(y„yd)' and listed a in Table I. The
FRD errors are such that a significant deviation
from the expected value of v = 1 is not visible.

As a result of formula (4) one can express this
statement in a precise form, since one can lump all
the experiments together and find an average value
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V of the test quantity v together with an average er-
ror X. Let us weight the different v; with the in-
verse errors cr; ' and define

i 1 I i 1t

(5)

Here, the index i runs over the M available experi-
ments. The variance of Vis then estimated by

&a;
(6)

From Table I, M = 18 values for v can be included
in expressions (5) and (6). We exclude the ninth
line with a negative result for r,„(y„yd) showing
that one has practically no estimate for the very
small correlation p in this case. Out of the eighteen
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V = 0.93 + 0.11. (7)

It is in agreement with the assumption that the
resonance-decay amplitudes have joint Gaussian
distributions which requires V = 1.

The author benefitted from stimulating conversa-
tions with Professor G. E. Mitchell and Professor
T. H. Seligman. He is indebted to Professor G. E.
Mitchell for the communication of yet unpublished
results.
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