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Structural Energies in Stage-One Graphite Intercalation Compounds
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A Thomas-Fermi density-functional theory is developed for structural energies in stage-
one alkali-graphite intercalation compounds. Correct trends for lattice constants and elastic
moduli are obtained. We compute corrugation energies AE and alkali-alkali spring constants
k, which determine in-plane intercalant diffusion and domain-wall structure. k is determined
by electrostatic effects, and is mainly independent of intercalant. AE depends strongly on in-
tercalant size; thus Li differs substantially from K, Rb, and Cs.

PACS numbers: 62.20.Dc, 61.50.Lt, 66.30.Dn

We have developed a Thomas-Fermi —type den-
sity-functional theory for structural energies in
first-stage alkali-metal —graphite compounds. A
variety of phenomena have been studied in these
compounds which are of general interest in two-
dimensional physics, including the dynamics of
domain growth, two-dimensional liquid-state dif-
fusion, and domain-wa11 structure in incommensu-
rate systems. %e will briefly explain our formal-
ism and demonstrate its utility by computing the
lattice constants and elastic moduli for the stage-
one alkali-graphite intercalation compounds; we
find that experimental trends are reproduced
correctly by our theory. We then identify and com-
pute several key structural parameters which are
relevant for the phenomena mentioned above.

We use density-functional theory because of its
proven reliability for the ground-state properties of
a wide class of solids. %e are interested in com-
puting small variations in the energy of a substantial
number of atomic configurations in a variety of
compounds having low symmetry and large unit
cells, and we judge that a self-consistent density-
functional approach involving the solution of a
wave equation would be far too costly for our pur-
poses. Instead a simplified formulation employing
the Thomas-Fermi approximation has been used;
we have already described this approach as applied
to pure graphite. ~ Its main advantage is that the to-
tal energy is written as a functional of the charge
density only:

Er[p] = TTF[p„]+T [7p„]
+ Vc[p.]+ V„,[p, +p„],

i.e., kinetic energies T plus potential energies V. p„
denotes the valence and p, the core charge densities
of the solid. TTF represents a Thomas-Fermi kinet-
ic energy ( —

p ), and T ' is a gradient correction
to TTF of the von Weizsacker form, 6 y~Vp~ /p.

This form of the kinetic energy is only valid in the
limit of slowly varying densities; therefore we
evaluate T as a function of the valence charge p„
only. The core contributions to the kinetic energy
are incorporated in a pseudopotential which is used
in the evaluation of the Coulomb energy Vc[p].
Vc thus contains both the classical electrostatic en-
ergy of the system and the core part of the kinetic
energy. The final term, V„„represents the elec-
tronic exchange and correlation energies evaluated
in the standard local-density approximation. V„,
has a nonlinear dependence on p, so that it is im-
portant to use the full charge density p = p„+p, in
its evaluation.

The crucial simplification in the present im-
plementation of density-functional theory comes in
the choice of p„, the input to Eq. (1). To obtain p„
we first use a fully self-consistent, wave-mechanical
density-functional formulation to compute the wave
functions )[)g of a single plane of graphite in isola-
tion from the rest of the system. The charge densi-
ty of each graphite plane in the intercalation corn-

pound is then taken to be ps(r) = I ldrr(r, k)~t
&&1 k. The Fermi level kI;+ is fixed so that both the
carbon and intercalant electrons are accommodated
in the graphite bands; full charge transfer is as-
sumed. %e then assemble these planes into a
three-dimensional crystal and construct p„by linear
superposition9: p„( r ) = gapg( r —R). (R speci-
fies the positions of the graphite planes in the crys-
tal). The alkali atoms enter Eq. (1) in Vc through
their ionic pseudopotential and in V, through p, .
By this scheme p„contains the real physics of the
covalent C bond charge, which would be poorly
described by a variational minimization of the ap-
proximate functional ET of Eq. (1). ET is only re-
quired to describe small changes involving alkali-
alkali and alkali-graphite interactions.

With this construction of p„we obtain the total
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FIG, 1. The total energy and its components as a func-
tion of plane-plane separation for the compounds LiC6
and K.Cs.

energy ET from Eq. (1). Vc is obtained by an
Ewald summation, while the other terms require
three-dimensional integrals over the unit cell which
are performed by Fourier techniques. We achieve
an overall numerical accuracy of 0.03 eV per inter-
calant atom. ' In Fig. 1 we give several examples of
our calculated energies versus out-of-plane spacing
c, . Li and K results are shown, with in-plane densi-
ties fixed at ambient values: LiC6 and KC8. RbC8
and CsC8 are quite similar to KC8. A number of
features are common to both the Li and the heavy
alkali compounds. In both, Coulomb and
exchange-correlation contributions dominate the to-
tal energy. The start of an increase in Vz at large
lattice constant in LiCs (and its rise slightly beyond
the edge of the plot for KCs) is a direct manifesta-
tion of the strong attractive electrostatic force
between the positively charged alkali planes and the
negatively charged C planes. At shorter distance
the effective Coulomb energy becomes repulsive;
this is a reflection of the pseudopotential approxi-
mation which, as mentioned above, folds some of
the core energies into an effective ionic interaction.
This repulsion becomes important at much shorter
layer spacing in LiC6 than in KC8. The smaller lat-
tice constant of LiC6 is due to the greater binding
energy of its shallowest core electron ( ——60 eV)
as compared with the heavier alkali metals ( ——20
eV)—the Li core is much more compact than the
others.

From Fig. 1 we have computed the out-of-plane
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FIG. 2. Out-of-plane lattice constant c„compressional
modulus C33, and shear modulus C44 for the first-stage
alkali-metal-graphite intercalation compounds. Theory
is shown by circles, experiment (from Ref. 12) by
squares.
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lattice constant c, and the elastic moduli C33 (the
out-of-plane compressional modulus) and C44 (the
shear modulus) for all of the stage-one alkali-
graphite compounds; our results are shown in Fig.
2. As the top panel shows, our ionic model is capa-
ble of accurately predicting the out-of-plane lattice
constants (to within 20/o) for all the alkali com-
pounds except Li. For Li we obtain a lattice con-
stant which is about 20% too large. We speculate
that this is evidence for a degree of covalency in the
Li-C interaction which induces an additional con-
traction in the layer spacing. " Still, our calculation
correctly reproduces the trend in the alkali-graphite
lattice constant.

C33 in Fig. 2 is obtained from the curvature of ET
in Fig. 1 around equilibrium. This calculation is
more demanding than that for c, and is not as quan-
titatively accurate as the one for the equilibrium lat-
tice constant itself. Still, it correctly reproduces the
observed' trends in C33. high for LiC6, low for
KC8 and RbC8, and slightly higher again for CsC .
The computations used to obtain the shear modulus
C44 are similar to those displayed in Fig. 1 (Ref.
10); we simply apply a small shear strain to the
crystal and monitor the change in ET. As for C33
we reproduce trends down the alkali column for
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TABLE I. Barrier heights, theoretical and experimen-
tal diffusion constants, and intrinsic alkali-alkali spring
constants for the stage-one compounds. We take
T =523 K.

AE
(ev)

D
(cm'/sec)

Dexpt
(cm'/sec)

k
(ev/A')

Li
K
Rb
Cs

1.30
0.18
0.14
0.18

1.0x 10
1.0x 10
2.0x 10
0.7x 10

5.7 x 10
7.6x10 ' '

0.25
0.26
0.28
0.28

'Ref. 2.

C44. This is notable since C44 is generally a factor
of 10 smaller than C33 this shows that we can accu-
rately predict phenomena occurring on widely dif-
ferent energy scales.

Having established the applicability of our
Thomas-Fermi scheme to alkali-graphite energetics,
we now show the results of further calculations
which apply this method to study the two-
dimensional structural phenomena mentioned at
the outset.

By studying large amplitude strains of the inter-
calant planes relative to the C planes, we have com-
puted the activation energy (sometimes called the
corrugation energy) for intercalant-atom motion
parallel to the host planes. The kinetics of domain
growth' and steady-state diffusion in the two-
dimensional liquid state are both determined by
this corrugation. We find the minimum-energy al-
kali position to be over the center of a C hexagon.
As expected, the saddle point for motion to the
neighboring preferred site passes over the center of
a C-C bond. The energy per intercalant at the sad-
dle point relative to the minimum, AE, is given in
Table I. While these calculations have been per-
formed for stage-one compounds for specific in-
plane densities, they have more general applicabili-
ty. ' Therefore we have used the AE's of Table I to
estimate the in-plane alkali in-plane diffusion con-
stants D which are relevant for the stage-two alkali
compounds, for which measurements have been
performed. We estimate D using &o

xexp( —AE/kT), where va is an in-plane alkali vi-
brational frequency and a is the in-plane graphite
lattice constant, a =2.46 A. For the Rb and Cs
compounds the agreement is quite satisfactory.

From a theoretical point of view the most striking
trend in the corrugation energy AE is the much
greater activation barrier for Li than for the other
alkali compounds. Recent neutron measurements

confirm' that AE is indeed quite large for LiC6
(AE =0.7 ev). The D for Li in Table I is much
too low, however; the mechanism for Li diffusion
may well be different from the hopping model used
above, and it may involve both C-plane and Li
motions. ' Our theory shows that this difference
between the AE's of Li and the other alkalis has a
very simple origin. Since the Li atoms lie much
closer to the C planes than does K, Rb, or Cs, they
move through a host charge density with a much
greater in-plane corrugation amplitude. Thus the
energy of the Li's varies more strongly with in-
plane position.

Under some conditions the in-plane alkali lattice
contains locally registered domains separated
periodically by domain walls' (i.e. , "discommen-
surations" or "solitons"). The structure of these
walls is determined by a competition between the
intercalant-host interaction characterized by the
corrugation energy AE and the intercalant-
intercalant interaction. In order to estimate the
compliance of the intercalant layer exclusive of cor-
rugation effects, we perform a new set of Thomas-
Fermi calculations in which the graphite charge
density is averaged parallel to the host planes. This
frees the calculation from the constraint of perio-
dicity and permits the intercalant energy to be stud-
ied as a continuous function of the in-plane alkali-
alkali lattice constant. The curvature of the result-
ing total energy around the LiC6 or MCs (M =K,
Rb, Cs) concentration provides an estimate of the
effective "spring constant" k for nearest-neighbor
alkali-alkali interactions —see Table I. k is reason-
ably independent of alkali species; the alkali-alkali
interaction is dominated by the classical electrostat-
ic energies Vc. The overall behavior of the in-
plane Vc is a general feature of the lamellar charge
distribution in the intercalation compound' and is
hence relatively insensitive to the details of the al-
kali species.

According to Bak, ' AE and k determine
domain-wall widths w according to' w —2a (2k/
AE)'~2. The predicted domain-wall widths for the
K, Rb, and Cs compounds are fairly large, about
five alkali lattice constants (w —15 A). However,
for Li the corrugation AE dominates k and ~ is very
small, les than one lattice spacing. The resulting
prediction' is that domain-wall lattices should be
well organized in the heavy alkalis but rather
"chaotic" in Li-graphite. Domain-wall lattices have
been seen in stage-two K and Rb compounds,
although domain-wall widths have not been es-
timated. Domain walls have not been studied in
the Li compound.
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In summary, we have developed a Thomas-
Fermi-type density-functional theory which pro-
vides an economical means of calculating structural
energies in graphite intercalation compounds. We
verify that this theory correctly reproduces trends in
the lattice constants and elastic moduli of these
compounds. We identify and compute two key
parameters, the corrugation energy AE and the
alkali-layer compliance k. AE and k determines the
physics of alkali diffusion and of domain-wall struc-
ture. k is almost invariant from compound to com-
pound because it is determined by simple electro-
static forces which are general to lamellar struc-
tures. On the other hand, AE depends strongly on
the lattice constant c, and is thus much greater for
Li-graphite. Thus Li-graphite has a higher activa-
tion energy for diffusion and should exhibit nar-
rower and more disordered domain walls.
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