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We use Monte Carlo simulations to examine the 0 dependence of the O(3) tr model. The
free energy as a function of 0 is determined and its peculiar scaling properties are clarified.
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Q = Jtd'xe„„e,t n'(t)„n') (B„n')1
(2)

is the winding number of the mapping, and is al-
ways an integer. The partition function of the
model depends on the vacuum angle 0:

Z (0,P) = JtDn et &s+ t I (3)

One can also define a lattice version of this
model. A popular lattice action is

S= —X n'(i)n'(i+ p, )
i, p„,a

(4)

The variables n'(i) are defined on the sites of the
lattice. To add a 0 term to this action, one must
have a definition for the topological charge of a
given lattice configuration. In contrast to the case
of the four-dimensional gauge theory, in the O(3)
model, the definition of Q is straightforward. In

There has been considerable interest in the sub-
ject of topology on the lattice in recent years. ' In
particular, it has been shown that meaningful
Monte Carlo simulations can be performed at
nonzero values of the vacuum angle 0. In this pa-
per we consider some aspects of the topological
charge in the (Euclidean) O(3) nonlinear o. model
in two dimensions. ' Apart from being interest-
ing in its own right, at nonzero 8 this model may be
relevant in the understanding of the quantized Hall
effect. 9

The dynamical variables in the O(3) model are
three-dimensional unit vectors n' (a = 1, 2, 3) with
the continuum action

S= ,' Jt d'x[rl—„na(x)]'

For a finite system with periodic boundary condi-
tions, the configuration n'(x) defines a mapping
from the two-torus T2 onto O(3)IO(2) = S2. Since
II2(S2) = Z, the model exhibits nontrivial topology.
The topological charge

our numerical simulations, motivated by Ref. 5, we
compute Q as follows: First, the lattice is divided
into triangles by bisecting each unit plaquette.
These triangles are mapped into oriented spherical
triangles in S2 by the fields n'(i) The . topological
charge is given by the number of times these spher-
ical triangles cover a reference point on S2 (say the
north pole).

One important difference between the four-
dimensional gauge theory and the O(3) o. model
will play a crucial role in the following discussion.
If one computes the free energy per unit volume
F(0,p) = —V '[lnZ(0, p) —lnZ(o, p)] (the vac-
uum energy density) in the dilute-gas approxima-
tion, one finds an ultraviolet divergence in the con-
tinuum limit. It arises from a divergence in the in-
tegration over instanton scale sizes p from small
sized instantons. As a consequence of this, the
topological susceptibility on the lattice,

X(P) = (Q2)/ V= r) F(II=0,P)/8&', (5)

which suffers from the same uv divergence, does
not scale in the continuum limit. ' This diver-
gence occurs because of the condensation of instan-
tons for which ( )) p (( is the correlation length).
This is not a lattice artifact and cannot be
"cured. "' The divergence on the lattice is not as
mild as in the continuum computation where it is
only logarithmic.

Note that even in the four-dimensional gauge
theory and in CP " ' models in two dimensions
with n & 2, X may not scale for some definitions of
Q on the lattice or for certain choices of the lattice
action. 47 In this case, however, the divergence
comes from instantons of scale size p of the order
of the lattice spacing a which condense into the vac-
uum in the continuum limit and give a divergent X.
This effect is a lattice artifact and can be avoided ei-
ther by a modification of the lattice action or by
adopting a more restrictive definition for the topo-
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logical charge. 4 7

Since F(8,p) is an even periodic function of I}, it
can be expanded in a Fourier cosine series;

F(t},P) = X a„(P)(i-cos.t)).
n 1

(6)

In the dilute-gas approximation, all the coefficients
except at vanish. The higher harmonics (a„,
n ) 1) are related to deviations from the dilute-gas
approximation. They represent interactions be-
tween instantons which occur when the gas is not
dilute. The uv divergence in the continuum limit
of F(8,p) means that although

F(e, ) =o,

( (p)F(& p) —p e "f'F(e p)
as p~ co.

This divergence is a result of instantons with

scale size a « p « (. Their number per physical
volume [$2(p)], diverges as p ~. On the other
hand, their number per unit volume, in lattice
units, goes to zero in the continuum limit. The ra-

tio between their size and their average separation,
which is a measure of their interaction, vanishes in

the continuum limit. Therefore, the instantons that
cause the uv divergence are dilute and their effect
should be well described in the dilute-gas picture.
One then expects that the uv divergence is present
only in the coefficient at in Eq. (6). All higher har-

monics (a„,n & 1) should be free of uv diver-

gences and should scale in the continuum limit.
%e note here that this statement about the uv

divergence in Fbeing present only in the coefficient
of the cos0 term is also implicit in a recent paper of
David. ' The arguments given above motivate the
conjecture:

10

5 &0 0

o x (p}
+ x, (p}
~ X —X4=6

If Eq. (9) is correct, G(p) should scale in the con-
tinuum limit.

Numerically, G(p) is hard to measure because it
is the difference of two quantities, both of which
are small for large p. We had to generate on the or-
der of half a million configurations in order to com-
pute G(p) with reasonable accuracy in the region

p ~ 1.3 where continuum behavior is expected. '3 7

The lattices we used in our simulations ranged in
size from 102 to 252. Our results for G(p) are
given in Fig. 1. %e also plot

x(p) = (Q')/v

and

X,(p) = ( g') / V= ((Q4) - 3( g2) 2)/ V

for comparison. Note that only G(p) has the
correct dependence on p required for it to have a
meaningful continuum limit. Neither X nor X4
scales correctly by itself. This is a good check of
Eq. (9).

To study the free energy as a function of 0, we
followed the method of Ref. 6. The system was

a„(P) c„e 4"~P2, P~ ~ for n ~2. (9)

An immediate consequence of this conjecture is
that for large p, F(H, p) is dominated by the first
harmonic term at(p)(1 —cos0). Therefore, any
nonanalytic structure in F(t),p), signaling a phase
transition, becomes more difficult to determine nu-

merically for large p, i.e., near the continuum limit.
One simple way to verify Eq. (9) is to study the

scaling properties of

S-&0 4— (8000 + 900} P exp [-4vrP

G(p) = —((g'), —(g'), ),

—n Q~ (10)

=a'F(f)=o, p)(/ae'+e'F(e=o, p)/ee4,

&0 I I I I

).3 h. 4

FIG. l. G(P) [see Eq. (10)] vs P from simulations on
a 20' lattice. For comparison, X(p) and X4(p) are also
plotted. Note that only G (p) scales correctly.
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FIG. 2. The free energy Fas a function of 8 on lattices
of size 152 (dotted line), 202 (solid line), and 252 (solid
dots). The error bars on the 15' data are too small to
plot. Those for the 20 lattice are only shown in the re-
gion near 0 = vr. Away from this region, they are negligi-
ble. The 25' data and its associated error bars are only
drawn for 0 (0.62m and for 8 ) 1.38m. For 0 in the
central region near m, the 25 data were not accurate
enough to plot.

simulated at 8=0 and a large set of thermalized
configurations were generated. The topological
charge distribution P(Q) was computed from this
set of configurations [P(Q) is the fraction of
configurations with charge Q]. The expectation
value of an operator 0 is then approximated by,

F(e, p) = V 'InxQP(Q)e's(2. (12)

The values of p we worked at were in the region
from P=1.3 to 1.5. The reasons we are forced to
small values of P have already been explained else-
where. s However, our P values are in the region
where one expects scaling behavior to start appear-
ing. '" In Fig. 2 we plot the free energy Fversus 0
for p = 1.3. No phase transition occurs up to
0 = 0.8m. The appealing possibility of a phase tran-
sition at 0=m is still open. The data on lattices of
size 20 and 25 agree with each other up to
0 = 0.6' where the errors on the 25 lattice become
large. This is evidence that these lattice sizes are
sufficient (g ~ 10) for this range of p, 8 However, .
the results for F on the 152 lattice agree with the
other curves up to 0 =0.2m, but deviate from the
other two lattice sizes for larger values of 0, clearly

where (. . .)s q means expectations in the &=0
ensemble. The free energy per unit volume is

FIG. 3. The subtracted free energy F, (H) =F(0)
—a~(P)(I —cos&) as a function of 6 on a 202 lattice at
P = 1.3.

= F(0,P = 1.3) —at (1 —cos8) . (13)

For p =1.3 the coefficient at =0.0069 is deter-
mined by a fit to the 20 data and F, is plotted in
Fig. 3. If a~ were known exactly, this curve would
be unchanged in the continuum limit, apart from a
scale given by the renormalization group. Since a~
is obtained from a fit, this is not strictly true for
Fig. 3. However, the general shape of the curve is
probably significant.
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