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Critical Properties of an Elastic Fractal
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Some solvable fractal models of the percolating backbone are used to investigate the criti-

cal behavior of a random, d-dimensional, isotropic, elastic medium. The critical exponent T
for the elastic moduli is found to be appreciably greater than the conductivity exponent, t, and
the ratio of bulk to shear modulus is found to have the universal value 4/d. A comparison
with the effective-medium and the Clausius-Mossotti-type approximations leads to the con-
jecture that the result 4/d is in fact exact.

PACS numbers: 05.90.+m, 46.30.Cn, 46.90.+s

An inhomogeneous random mixture of a solid
and a fluid will only exhibit solid properties (e.g. , a
nonvanishing shear modulus p) if the solid com-
ponent forms a percolating cluster, as in the sol-gel
transition of polymer solutions. If instead of the
fluid component we have a vacuum, the bulk
modulus K will also vanish below the percolation
threshold. In this Letter we investigate the critical
behavior of p. and K by invoking some solvable
fractal models for the backbone of the percolating
cluster at threshold. Rather surprisingly, we find
that the critical behavior of the elastic moduli p, and
K differs from that of the electrical conductivity o-

in the same models. We also find that in the two-
dimensional (2D) case, the ratio tr/p, has the
universal value 2. We present and discuss the con-
jecture that the universal value of tt/p, in real d-

dimensional percolating systems near the threshold
is 4/d.

The fractal object that we consider is the 2D Sier-
pinski gasket and its generalizations to arbitrary in-
tegral dimensionalities d. This fractal was first pro-
posed as a model for the backbone by Gefen et al.

Even though it is clearly not a very good model if
judged by the numerical values that it yields for the
conductivity critical exponent t [o-,~ (p —p, ) '

where p is the volume fraction of the conducting
component and p, is the percolation threshold], it
has the advantage of being exactly solvable. By us-
ing this same model to evaluate the critical ex-
ponent T of the elastic moduli,

tte Pe~ (& &c)
T

we can thus test the hypothesis, put forward some
years ago by de Gennes, that T=t.

Consider first the 2D gasket shown in Fig. 1(a),
of size L = 2' for I = 2. Each bond represents a sim-
ple spring with a spring constant ko. Macroscopic
external forces are applied only at the three external
vertices. In order to construct a network with
equivalent macroscopic elastic properties but a
smaller number of unit (i.e., L = 1) cells, we try to
replace every L =2 piece of the gasket by an
equivalent L = 1 piece. Because every piece is con-
nected to the rest of the spring network by its three
external vertices, one only has to consider the dif-
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FIG. 1. (a) Sierpinski gasket in 2D with L =4 unit cells to a side. Each bond corresponds to a simple spring with
spring constant ko. (b), (c) Three possible deformations of the L = 1 and L = 2 gaskets, respectively. Note that to order
8i, only the external bonds change their lengths.

ferent ways of deforming those vertices. Three
such deformations are shown in Fig. 1(b) for an
L = 1 gasket and in Fig. 1(c) for an L =2 gasket.
Neglecting deformations that are of higher order in
the overall deformation 5L/L, we find that only
external bonds in Fig. 1(c) actually change their
length. In all cases the number of bonds affected in
the L = 2 gasket is twice the number affected in the
L = 1 gasket, and each of the affected bonds
changes by the same amount. These conclusions
are easily seen to be valid for Sierpinski gaskets in
any number of dimensions. This enables us to
compare the elastic deformation energies of the
I =0 (L =1) and I =1 (L =2) gaskets EO=Ako
x5L2 and Et = 2Ako(5L/2)2, respectively, where
the constant A depends on the character of the de-
formation. Thus, we can replace the L =2 gasket
by a simple triangle of springs of size L = 2 if we
rescale the spring constant to be k& = kp/2.

The elastic moduli for a size-L = 2' gasket made
of elementary springs are thus the same as the elas-
tic moduli of a simple size-L triangle with a spring
constant ki = 2 ' ka = ka/L Thus we may write, for
any elastic modulus C,

Cg ~ ki/L ~ = ko /L (2)

The critical behavior of the macroscopic modulus
C(p) is now easily found, following Gefen et al. ,

2

by identifying C(p) with Cr for L =(, where ( is
the percolation correlation length (cc (p —p, )

512

Thus we find

C (p) cc (p —p, ), T/U = QI —1. (3)
In contrast, when the same fractal model of the

percolating backbone was used for the conductivity
problem, the result obtained was

a-(p)~ (p —p, )', —=d —2+log2 . (4)
d+3

'd+1
Comparing these results for d = 2, 3 we find

t/v=0. 737, 1.585 for d =2, 3,

T/v = 1, 2 for d = 2, 3.
Apart from the rather artificial geometry of the

Sierpinski gasket, the main flaw of the model dis-
cussed above seems to be the fact that there is only
one "microscopic" elastic constant ko. Thus it
should come as no surprise that the bulk modulus K

and the shear modulus p, that can be defined for
this model have a fixed ratio ~/p, . This ratio can be
found by calculating the elastic energies associated
with two different distortions of the unit cell of the
gasket. Thus, if the unit cell is compressed iso-
tropically by contracting each bond of length L by
an equal amount 5L, the elastic energy is

—,
' ko[d (d + I )/2 15L, (6)

where the factor d (d + 1)/2 is the number of bonds
in the unit cell, which is a d-dimensional simplex.
This can be equated to the expression for the ener-
gy in terms of the Lame constants X and p, for a
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fractional volume change of d5L/L:

—,
' [)t+ (2/d) p, ](dsL/L)2, (7)

which yields

K= A. + (2/d) p, = (kpL /2)(d+1)/d. (8)

Similar considerations can be made for the case
where only a (d —1)-dimensional simplex that is
part of the d-dimensional simplex is isotropically
compressed, but there are no distortions in the per-
pendicular direction. (In 2D this would mean
compressing a basis of the unit triangle, and leaving
the perpendicular height unchanged. ) We thus find
the following equivalent expressions for the elastic
energy:

kpsL d(d —1) (d —1)2
2 2 4d

1 (d —1)5L k+ 2

2 L d —1

From this and (8) it follows that

K/p, = )(/p, +2/d = 4/d. (10)
We now turn to consider a slightly more realistic

2D elastic fractal network model, where the above-
mentioned flaw is removed. We use a unit cell that
is a three-terminal linear elastic element [see Fig.
2(a)]. A force f can be applied at each terminal,
and as a result of these forces a displacement u ap-
pears at each terminal. The relation between the

forces and the displacements is chosen so that the
unit element represents an isotropic elastic material
with arbitrary values of A. and p, .

ft„' = ()(+2p)ut„' + ()(.+ —,
'

p, )(u2„+u3„)
+ —,

'
%3p, (u2„2 —u3„3'),

f (t) & Jg ( u (2) u (3))

The upper indices here refer to the terminal
number, while the lower indices define a com-
ponent axis; there is a different local coordinate
system associated with each terminal [see Fig.
2(a)]. Similar equations can be written for
f2r f2y f3x and f3y

(2) (2), (3) (3)

A fractal network is produced by hooking up
these three-terminal elements in the same way as a
2D Sierpinski gasket [see Fig. 2(b), which is the
analog of Fig. 1(a)]. At a point of contact between
two unit elements [the black circles in Fig. 2(b)],
the displacement is common to the two elements,
and the forces exerted must be equal and opposite
in equilibrium. As in the case of the simple gasket,
the network at each stage is connected to the rest of
the system only through three external vertices.
Therefore an L = 2 triplet of elements is again ex-
actly equivalent to a single element with renormal-
ized values of A. and p, . A tedious but straightfor-
ward calculation leads to the following relations
between the I =1 and the I =0 moduli:

(a) Xi

~'-„(oy()
3p, pKp 3|M,pKp

K]= P&=
Kp+ 4jxp SKp+ 2jxp

from which we find

(12)

t2)u, f

Xp Yp Xs

~r"t) L ~ g

~e'MM+'a )

L=4

FIG. 2. (a) Three-terminal linear device representing
an isotropic elastic material with arbitrary A. and p, . At

(i)
each terminal there is a displacement u and a forcef, i =1,2, 3, and a local coordinate system (X;, Y;).
(b) Sierpinski-gasket-like L =4 hookup of the unit ele-
ments of (a).

Kt/P, t = (2+ SKp/Pp)/(4+ Kp/Pp). (13)
If this transformation is iterated starting from any

positive value for Kp/p, p, it is easy to see that the
result converges upon a fixed point at K/p, = 2, in
perfect agreement with the expression 4/d when
d =2. The significance of this result is that the ra-
tio Kp/pp is an irrelevant parameter of the problem
for critical properties, and that we could have as-
sumed Kp/pp= 2 from the outset. In that case, the
transformation (12) reduces to Kt = Kp/2, p, t

= p, p/2,
i.e., the same as for the 2D Sierpinski gasket of
springs with a single spring constant. Thus, the
model we discussed earlier is as good as the present
one as far as critical behavior is concerned, and
leads to the same index T. We suspect that a simi-
lar simplification occurs in the d-dimensional gen-
eralization of the present model, but this needs to
be checked.

At this point it is useful to ask what are the pre-
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(d —1)(d + 2)
2

2(d —1) t

Kg

(14)

It is a straightforward matter to show that K, and p, ,
both have a threshold at p, = 2/(d+ 1), and that
the critical exponent is T = 1 for both moduli. The
same calculation also reveals that tt, /tt, , = 4/d
asymptotically for p p, . It is also easy to check
that if in (14) we use values for Kp and p p that obey
Ko/p, o

——4/d, then the results for x, and p, , also obey
tt, /p, , =4/d independent ofp. This latter property is

also present in the Clausius-Mossotti-type approxi-
mation (CMA). The significance of this is that
while neither the effective-medium approximation
nor the CMA can be relied upon to give correct
critical behavior (in particular, the threshold in the
CMA is at p = 0), they are both asymptotically
correct when the volume fraction of the voids
1 —p 0. More precisely, they are both exact (and
give identical results) to order 1 —p. Thus, the fact
that these approximations yield tt, /p, , =4/d for

Kp/p, p
= 4/d, independent of p, proves that this value

is a fixed point at least to order 1 —p. This indepen-
dence might possibly be maintained in higher or-
ders too—all the way down to p, .

In summary, we have shown strong indications
that the critical behavior of the elastic moduli near a
percolation threshold differs from that of the con-
ductivity, and that the elasticity critical index T is

probably appreciably greater than the conductivity
index t. We have also shown indications to support
the conjecture that K, and p, , have the universal ra-

tio 4/d (especially that tt, /p, , =2 in 2D), indepen-

dictions of the self-consistent or effective-medium
approximation of Hill and Budiansky, suitably
generalized to an arbitrary dimensionality d. For a
two-component mixture where one component is
voids (tt = p, = 0) we obtain

Ke p —ot Pe p —P
Kc 1 cl po 1 P

dent of p or of Kp and JM, p near the threshold. Calcu-
lations are in progress on simulations of a discrete
random elastic network in order to investigate fur-
ther these interesting results. Experimental investi-
gations of this problem can be conducted on
"weak" solids, e.g. , weakly compacted sandstone,
or polymer solutions near a sol-gel transition. The
difference expected between t and T seems to be
large enough to be observable even at moderate
precision.
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Note added. —After this work was completed,
Feng and Sen published results of simulations of an
elastic percolating network. They also find critical
behavior that is different from that of the electrical
conductivity.
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