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Externally Modulated Rayleigh-Benard Convection: Experiment and Theory
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Quantitative experimental results are presented on the response of a convecting fluid to
periodic modulation of the imposed heat current. A theoretical model which is a generaliza-
tion of the Lorenz equations is proposed to describe the results. It yields semiquantitative
agreement with experiment in both linear and nonlinear regimes.
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External modulation of a nonlinear system can
dramatically alter its behavior and can induce novel
dynamic states, particularly near a point of instabili-
ty. Examples are a pendulum or an electrical circuit
under parametric modulation, or the more interest-
ing case of a phase-separating fluid undergoing
periodic spinodal decomposition. ' An example
from classical hydrodynamics is Rayleigh-Benard
convection under periodic external modulation.
This problem has been studied theoretically, with
primary focus on modifications of the threshold of
convection caused by modulation. There have been
few experimental tests of the calculations and little
theoretical or experimental work on the nonlinear
aspects of the problem, i.e., on phenomena occur-
ring above threshold. The purpose of the present
work is to report quantitative experiments and to
present a theoretical model which is accurate
enough to yield semiquantitative agreement with
experiment yet simple enough to permit calcula-
tions in both linear and nonlinear regimes.

Consider a laterally infinite Rayleigh-Benard sys-
tem in which the temperature T'(t) of the lower
plate is a periodic function of time with period
2n/to and the upper plate temperature T" is held
constant. We define a time-dependent (reduced)
Rayleigh number

r (t) = r, [ T'(t) —T"]//( T' T"), —(&)

where ro = R/R„R, is the critical Rayleigh
number4 in the absence of modulation, and 8 is the
static Rayleigh number corresponding to the aver-
age temperature difference T' T". [Times are—

measured in units of the vertical diffusion time
a /K, where d is the thickness of the fluid layer and
tc its thermal diffusivity. l By a truncations of the
Oberbeck-Boussinesq (OB) equations of hydro-
dynamics which retains three spatial Fourier modes
of the velocity and temperature fields, one arrives
at the following (Lorenz) equations for the ampli-
tudes x, y, and z of these modes in the modulated
case:

rx(t) = —ox(t) + oy(t). , - (2a)

ry(t) = y(t) + [r (t) —z—(t) ]x(t),
r z(t) = ——', [z(t) —x(t)y (t) ], (2c)

j"""(t)=j (t) j""'(t)=—g 'z(t), (2d)

where o- is the Prandtl number, 4 ~ and g are con-
stants determined in the absence of modulation, 7

and (tr) is a periodic function whose nth Fourier
coefficients is related to that of r(t) by r„
= 4mzr„/(47r iton ). The—total heat current at the
lower plate j(t) (normalized to its value at R, in
the absence of modulation) consists of a convection
part j"""(t)calculated by Eq. (2d), and a conduc-
tive part j""d(t) which was determined experimen-
tally in our work.

The stability properties of the conductive state
x =y = z = 0 are those of the parametrically driven
oscillator

(r'/tr)x(t)+r(o-+1)o. 'x(t)
—[r(t) —l]x(t) =0 (3)

which follows from Eqs. (2) by linearization. Let
us consider for simplicity a harmonic modulation in
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FIG. 1. Average convective current jo'"' vs average

Rayleigh number ro for ao =3.3 and two different modu-

lation amplitudes A. The dotted line is the unmodulated
result (6=0). The dashed lines are theoretical predic-

tions for the ideal system with no sidewall forcing [Eqs.
(2a)], and they show an upward shift of the convective
threshold. The solid lines are for finite forcing [Eq.
(2a)'] and they display an imperfect bifurcation from
conduction to convection. The solid circles are the ex-
perimental data for co=3.3 and 5 =0.5 from which the
value f=0.04 of the mismatch parameter was deter-
mined.

(1), i.e.,'
r ( t) = r & Re [ I + b, exp ( —i cu t ) ] . (4)

The modulation stabilizes the conductive state x = 0
by damping out small convective perturbations, 2

thus leading, in general, to an upward shift of the
threshold value of the average Rayleigh number ro
at which convection sets in. This threshold can be
calculated as a function of cu and 5 using Eq. (3),
and the values agree closely with those calculated
exactly from the linearized OB equations without
truncation in limiting cases2 such as small 5 or co.

Figure 1 shows as dashed lines results obtained nu-
merically6 from (2a)-(2d) for the average convec-
tive current jo'"' as a function of ro for fixed cu

and two values of A. The suppression of convec-
tion caused by modulation is seen by comparison
with the dotted line which corresponds to 5 =0 (no
modulation) .

The above results hold for ideal, laterally infinite

systems. In real cells, the dynamic thermal
mismatch between the fluid and the sidewalls
causes lateral heat currents. Within our truncation
procedure, they give rise to additive forcing in the
velocity equation (2a) yielding

7x(t) = —trx(t) + try (t)+ ag(.t) . (2a')

The forcing term ((t) was introduced earlier4 to
describe the finite onset time for convection when
the Rayleigh number is raised from below to above
R, The Fourier coefficientss of ((t) are related to
those of the modulation r(t) by g„=—i~nr„
&& fg(con). 6 The function P(p, ) varies smoothly
from 1 to 0 for 0~ p, & ~ (for the frequencies con-

sidered here, P is close to 1). The dynamic
mismatch parameter f was calculated theoretically
for stress-free horizontal boundaries9 and the
resulting value explained the onset experiments"
semiquantitatively. The present experiments are
more sensitive to the precise value of f, and more-

over they involve an extrapolation of previous stud-
ies49 to higher frequencies. Therefore, we deter-
mined f by fitting to the experimental data points
shown in Fig. 1. The resulting value f=0.04 is

within a factor of 3 of the earlier estimates, 4 which

can be considered satisfactory agreement. This
value is kept fixed in all other calculations, and thus

there are no further adjustable parameters. The ef-
fect of ((t) on the average convective current jo'""
is shown by the solid curves in Fig. 1. While the
ideal modulated system shows a sharp Hopf bifurca-
tion from conduction to convection (dashed
curves), the sidewall forcing makes the bifurcation
imperfect and masks the upward threshold shifts
predicted for the ideal system.

The experiments were carried out in a cylindrical
cell' of radius 4.78d and filled with normal "He
(o.=0.78). A sinusoidally varying heat current~

j(t) = ja+ a singlet was applied to the lower plate,
while the upper plate was held at constant tempera-
ture. The ensuing Rayleigh number was then mea-
sured as a function of time for different sets of Jo,
a, 6).

In order to compare the experimental r(t) with

the theory, it is necessary to "invert" the model,
i.e., to find the function r (t) which leads to the ex-
perimentally imposed total current j (t) via Eqs.
(2). The inversion also requires a knowledge of the
conductive current j""(t) which appears in Eq.
(2d). Here, we determinedj""d(t) for a given r(t)
by separate experiments in the absence of convec-
tion. The inversion required typically five to ten
iterations. Results for a typical run are compared
with experiment in Table I which displays the arn-

plitudes and phases of the Fourier coefficients of
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'&nTABLE I. Amplitudes and phases of the Fourier coefficients (Ref. 8) )r„(exp " of r(t), where a current

j (t) = 1.066+ 1.000 sin &ut was applied at the bottom plate.

10'1~3 I 43 10'1~41 44 10'I r5 I

Exp. 9.8 1.044 3.20
Th. 9.8 1.045 3.20
Exp. 6.5 1,046 2.98
Th. 6.5 1.050 2.99
Exp. 3.9 1.028 2.70
Th. 3.9 1.033 2.71
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r(t) for a given sinusoidal j (t) Altho. ugh the Ray-
leigh number r (t) is dominated by its fundamental
Fourier component, the small contributions from
the higher harmonics are well reproduced by the
theory. Alternatively, we may compare the experi-
mental and theoretical convective current" j """(t),
as is done in Fig. 2 for another typical sinusoidal
j(t). Note that j"""(t)differs dramatically in mag-
nitude, phase, and harmonic content from the total
imposed current j (t). Nonetheless, there is good
agreement between experiment and theory.

The Lorenz model (2a)-(2c) has the symmetry
x —x,y —y, z z which reflects the
equivalence of the two turning directions of the
convective rolls in a laterally infinite system. With
the forcing term ((t) [Eq. (2a)'], the two directions
are no longer equivalent. In one of the two periodic
states the velocities are suppressed by the sidewall

forcing, while in the other they are enhanced. With
increasing modulation amplitudes the forcing in-
creases, and a transition from the unfavored to the
favored convecting state can be induced. This tran-
sition, marked by an increase in jo'"', was indeed
found experimentally at parameter values close to
those predicted by the model. Details, as well as
further experimental data, will be published else-
where.

In conclusion, we have presented the first quanti-
tative experimental data on the response of a con-
vecting fluid to periodic external modulation of the
heat current near threshold and a theoretical model
to describe these data. Although this model in-
volves an uncontrolled truncation of the hydro-
dynamic equations, it gives a good account of both
linear and nonlinear aspects of the experiments.
Our specific results are: (i) the threshold shifts due
to modulation in ideal (laterally infinite) systems
[Eq. (3)] agree well with those obtained from exact
solutions of the hydrodynamic equations in limiting
cases; (ii) under modulation, the dynamic sidewall
heating induces lateral heat flow into or out of.the
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FIG. 2. The time dependence of the convective
current j"""(t)over one period of three frequencies ~
and modulation amplitudes 5, and a sinusoidal imposed
current j (r) = 1.301+ 1.235 sin (cur). The solid lines are

experimental results and the dashed lines come from
iteration of Eqs. (2). Note that the shape of j""'(t)
differs dramatically from that of the imposed current.

I.Q

fluid, causing additional forcing of the velocity
field. This effect masks the ideal threshold
behavior and, in general, leads to significant round-
ing of the bifurcation. The extent of the rounding
is controlled by a mismatch parameter which has
been determined from the data and is of the same
order of magnitude as a previous theoretical esti-



VOLUME 53, NUMBER 1 PHYSICAL REVIEW LETTERS 2 JULY 1984

mate and an independent experimental determina-
tion;" (iii) the convective current above threshold
can be calculated numerically in a straightforward
manner for both ideal and real systems; (iv) quanti-
tative experiments have been carried out, and the
convective current j"""(r) has been measured for
various modulations of the total current; (v) com-
parison between experiment and theory for j""'(r)
yields semiquantitative agreement.

After this work was completed, we became aware
of recent theoretical results of Roppo, Davis, and
Rosenblat' who showed that in a modulated la-
terally infinite system a hexagon pattern will be
stable near threshold. In that case, the mode trun-
cation leading to Eqs. (2) is no longer applicable.
This effect suggests interesting future experimental
studies. However, for the present range of parame-
ters, recent flow visualization experiments have
sho~n that flow in the form of cylindrical rolls is
stable in the presence of modulation. ' We con-
clude that the hexagonal pattern' is suppressed by
the dynamic forcing from the sidewalls, and that
our model is applicable to a wide range of finite sys-
tems.
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