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Is Isotropic Turbulent Diffusion Symmetry Restoring?
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Analytic expressions of the convection diffusivity tensor in fully developed isotropic tur-
bulent flow are given and used to evaluate the broadening of a cloud of marked particle pairs
perpendicular and longitudinal with respect to an initial separation. Both turn out to remain
different because of the difference between (vs) and (v2s) . Parameter-free expressions for
the variances o-~ and tT][ yield the dependence on the Reynolds number and other flow
parameters in addition to the known scaling behavior ~ v'

PACS numbers: 47.25.—c, 05.40.+j

The pair separation of marked particles by con-
vection in a turbulent fluid leads to a broadening of
an initially sharp distribution. This is called tur-
bulent relative diffusion. A most remarkable
feature is the strong dependence of the turbulent
diffusivity on the extension of the cloud, first stud-
ied by Richardson. ' Correspondingly, the variance
of the particle distribution, denoted by 0-, and the
diffusivity, defined by do/dr, incr-ease strongly
with time ~ and extension r, respectively. The
power-law exponents both of 0-~ 7

+ ~ and of
dtr/drccr i + reflect the fractal nature of tur-
bulence, 2

7 and n = 2y/(9+ 3y) being the intermit-
tency contributions, and the exponents 3 and 3

fol-
lowing from Kolmogorov —von Weizsacker-Heisen-
berg —Onsager scaling. As stressed by several au-
thors (e.g. , Mandelbrot and co-workers2) turbulent
relative diffusion is particularly suited for studying
the dynamics of turbulent eddies, especially the
probably large effects of intermittency on diffusion.

Recently a unified theory of turbulent relative
diffusion was developed which not only deals with
the scaling behavior but also yields the magnitude
of the variance tensor o.;, ( r, r ) . This is defined by

o-,j ( r, r ) = (58;( r, r ) oA, ( r, r ) ),
where 5R( r, r) = R, ( r ) —r and R, ( r ) describes
the distances between two particles at time v, which
where released at r =0 a distance r =

~
r

~
apart.

The brackets indicate the averaging over all particle
pairs. The basic underlying idea is that diffusivity is
a transport coefficient which should be intimately
connected with the static structure functions of the
turbulent flow field, defined by

D,,(r)=(u, (r)u)(r))
=D, (r)PJ (r )+D (r)P; (r ),

the correlation tensor of the velocity difference
v( r ) = u(x + r ) —u(x ) which we call an r

eddy. P&~ ( r ) are the projection operators with

respect to the unit vector r . The transverse part
D ~ (r) is different from the longitudinal part D

~~ (r)
even if the flow is isotropic (and homogeneous);
both are connected by incompressibility, D~

Dll + rDII /2 ( ) Dll ) ~

This paper aims at contributing to the question of
whether the preferential transverse convective pair
separation leads to a nonspherical diffusive broad-
ening of an initial cloud of particle pairs, all released
at the same vector distance r at 7=0. In analogy
to the static structure function the variance tensor
can be decomposed into a longitudinal and a
transverse part, 0-]] and 0.~, according to the rela-
tion

(rj(r, r) =trs(r, r)PJ ( r )+cr, (r, 7)P;'( r ).
As our main result we will show that an isotropic
turbulent flow field seems to restore spherical sym-
metry only approximately; 0-~ —0-

~]
tends to a finite

nonzero limit. Its value depends on the form of the
radial distribution of the cloud, and is r if the dis-
tribution is Gaussian.

Our results are based on a refinement of the clo-
sure assumption suggested in Ref. 3. To test its
validity we first compare with experimental dif-
fusion data. 4 We then give approximate but analyti-
cal expressions for the trace of the variance
0-=0-]]+20~ and the asymmetry 0diff 0 J 0
[cf. Eq. (7)]. Equation (9) presents an asymptotic
relation valid for large time v. We restrict ourselves
to the inertial subrange, although extension to ini-
tial separations r in the viscous subrange is easily
achieved [cf. Ref. 3]. We furthermore treat inter-
mittency using the log-normal model which for the
low-order moments needed in turbulent diffusion
seems most appropriate. But our formulas also hold
for the fractal model if one simply replaces the in-
termittency exponent p, by 3p, , since as will be
shown the intermittency corrections enter only
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through the second-order structure function.
Following the notation of Ref. 3 the relative turbulent diffusivity is given by

Both particles perform Lagrangian motion because
the Kubo formula (1) contains the Lagrangian ve-
locity difference v( r, r) = dR, /dr. The phenom-
enological closure assumptions are (i) to replace the
Lagrangian velocity v(r, r) of the pair with initial
distance r after time r by v(r„0), the velocity
difference at the rms separation r, ; (ii) to decom-
pose the time correlation function (u;(r„0)
&&u/(r„r')) into its longitudinal and transverse
part with respect to the direction of R„given by the
unit vector R, , and to average the directional pro-
jectors, e.g. ,

times. But the trace 1"=I ][+21 ~ turns out to in-
crease so fast, I'=—(t) +", that the exponent is=—a '((1 for all times. Thus in contrast to ther-
mal diffusion the correlation never really decays
and the diffusivity is proportional to t and not pro-
portional to relaxation time, unless a can be made
small. Also, in contrast to molecular diffusion the
magnitude of the diffusivity is not ( v ) = 3kT/

I & I I I I

(R 0;( r )R,o/( r )) ()
= ((R, r ) ) = (cos2n);

(iii) to use the relaxation approximations for the
temporal decay of the correlation function

(u, (r„0)u, (r„r') ) (),

10
5

slope

where t() ) (r, ) is the correlation time of an eddy
with extension r, and has been evaluated in Ref. 5

exactly, based on the Navier-Stokes equation,

t„)= 3D)( )./2e,

& R, &/3
G fTl

10—4

for r in the inertial subrange with e denoting the
mean rate of energy dissipation; and (iv) to express
the rms separation of the particles at ~ by the vari-
ance, r, = [r2+rr(r, 7)]'/2. This yields from Eq.
(I) a coupled set of first-order differential equa-
tions for the variances o. ]~, o-~, which we solved nu-
merically to compare with the data4 (see Fig. 1).
For the static structure function

D(((r) =b((Na g '(r/v))' '+" '(ev)' ' (4)

was used. WR, & is the Taylor Reynolds number, p,

the Kolmogorov intermittency exponent, p, =0.25
from the BOMEX data, s

b(( = 3, 7l = (v /e) ' (here
0.19 cm) the Kolmogorov length, and v the
kinematic viscosity; v = 0.153 cm /s for air.

We now write down the formulas underlying the
theoretical curves of Fig. 1, obtained from (1) by
use of (i) through (iv). It is convenient to scale
them properly, lengths by r, times by t)) (r) (the de-
cay time of eddies of the initial size r):
F)) ) =(r)( d/r dimensionless variance; t =r/t))(r)
dimensionless time.

The r' integral in (1) yields a factor (cf. Ref. 3)
[1—exp —t/(1+I )' '+" ' ], being ~t for small

i0 ope 2

I

k
2l

l

I I I I I I

5 7 )0 20 40

sec
FIG. 1. Increase of the mean square extension of the

cloud in one direction (R,)/3=r'+(r(r)/3 vs time r
(full curves). The experimental data are the measure-
ments of Frenkiel and Katz [releasing a smoke puff of
gun powder to realize the (spherical) initial cloud with
r/rl=—100) with Gifford's analysis. The paramaters we

took from Ref. 4 are mean velocity U = 600 cm/s, height
z = 20 m, and viscosity v = 0.153 cm'/s; hence
Ns, „=—0.9(zU/v)'/'= 2600. Estimated energy dissipa-
tion ~ =—2.2 cm'/s', hence turbulence strength
u' = (~vN)[, „/15) ' = 20 cm/s and microscale
)). = vNR, Ju =20 cm.
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m =const, but increases with the particle distance r, since more energy is in the larger eddies. This is the
basic physics behind the anomalously enhanced convective diffusion. It is

I (t) = (I +a2t2)3 2 1 P, 12 (6)

We think that this is the first explicit and
parameter-free formula which expresses the in-
crease of the variance for all times in its depen-
dence on the initial size r, the Reynolds number
NR, )„ intermittency exponent p, , energy dissipation
e, and kinematic viscosity v (via t). There is a t
regime for small times and a t3+" regime for large
times. The comparison with the data is promising.

If molecular viscosity is added (cf. Ref. 3), in-
stead of the closed expression (6) the differential
equations have to be integrated numerically. Ex-
tension to two-dimensional turbulence is also easy
and straightforward.

While the equation for the trace cr or I does not
depend on the directional factor at all, the latter
determines the equation for the asymmetry
I d'ff r, —r ]] which can be written in the form

1 1+ti, /6 3 (cos2n) —1

11 1+p,/33 2

This determines I'd'ff in terms of I', since (cos n) is
expected to depend on the form of the cloud, i.e.,
on I

~~
and I'1. Certainly it is (cos n) =1 initially,

so that I diff increases much slower, -= —,', , than I .
This small factor is precisely (D1 D~~ )/D-
= if/(2~ + 6) with K = d (lnD

~~ )/d (lnr ) . Thus, the
r exponent K of the static structure function can be
measured through the initial growth of the asym-
metry, which therefore is universal. In the long run
(cos2n) tends to —,. Depending on the manner in

which the right-hand side of (7) tends to zero, I'd'ff

approaches a finite value or increases logarithmical-
ly.

If the probability distribution P(R) for the pair
distances R, is a function of the variable
x = (R„+R» )/a. ~+ (R, —r) /fr~~ only, it is possi-
ble to expand the directional average systematically
in powers of 1/I, the dimensionless inverse trace
r'/OWe found in lowest ord.e.r

(7)

(cos n) = —,
' + —', (5 —I'd;«)/I'. (8)

5 = 1 for a Gaussian pair distribution and, in gen-

a = [ '&' (1 —p/12) (1 + p/33) b
~~

] [Ng~i (r/g]i

so that a '(p, = 0) = 0.08 and a '(p, = 0.5) = 0.15.
As a function of time the exponent decreases like
t »; y=3p/(12 —p, ). By expanding the exponen-
tial the resulting equation for the trace I can be
solved analytically:

g, =+, (1+p, /6)/(I + p, /33),

g2 = 35,/(1 —P,/12):—351.
(10)

Hence a finite deviation b, from a spherical form
remains which is approached rather slowly. The
direction perpendicular to r is pronounced imaging
the preference of perpendicular flow due to in-
compressibility. The relative deviation I'g'ff/I, of
course, approaches zero ~ t +", describing the
symmetry-restoring effect of the isotropic turbulent
flow field. At present, the finite asymptotic asym-
metry 6 is beyond the scope of existing data; better
measurements would provide useful information
about the marked particle pairs' distribution func-
tion, especially its inverse-squared moment.

Finally, we emphasize that we considered r and r,
in the inertial subrange. If r, increases beyond the
outer turbulent scale L =qNR, „, we expect D]] to
become constant, 2u'; hence t~~ stays constant, the
correlation in (1) decays, and the diffusion be-
comes normal, o-(r) =6D~~(L)t~~(L)r =2Er. For
the convective diffusion constant in ranges beyond
L we evaluated E = —', vN~, „, which is of the order
of 300 m2 s ' for atmospheric turbulence.

We hope this discussion might stimulate more
measurements and analysis of data for convective
turbulent diffusion in terms of the formulas (6) and
(9). If the close connection between the rather
well-established structure functions D~ [] and the
turbulent diffusion provided by our closure is con-
firmed, the simple formulas for the transport of
particle waste in air or water may find useful appli-
cations. They may also serve to clarify the ap-
propriate model for intermittency by diffusivity
measurements as was emphasized already by Pro-
caccia and co-workers. The absolute curdling
model gives even stronger effects on diffusion than
the log-normal model which we used here, as sub-
stantiated earlier.
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The constants k1 and k2 are determined by I d;«(I')
at a reference point. The exponents are rather
small,
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