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Growth is described in terms oof an active zone e ine aso
'

d f' d the region where new particles
b bilit P (r,N) dr that the Nthis zone is characterized by the pro a i i yjoin the existing cluster. This zon

ass. Our Monte Carlo simulations ford a distance r from the center of mass. ur o
Na re ation and the Eden process show th t for lart o-dimensional diffusion-limite gg g

= [(2m)' g~] 'exp[ —(r —ry) /2grr], where rrr —N an
tl diverging lengths in these processes.indicating the presence of two distinct y iverg'
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In recent years considerable effort has gone into
the study of clusters grown by various processes.
The reason for this interest is twofold. First, a wide
variety of nonequilibrium phenomena such as the
aggregation o smf smoke particles, electric breakdown,

or rowth,the early stages of nucleation and tumor growt,
polymerization, etc. , can be described' in terms of
simple models in which a single cluster grows
througu h the addition of individual particles.
Second, some of these growth processes, such as
diffusion-limited aggregation (DLA), lead to struc-
tures which are fascinating in their own right since
they are sca e inva1 invariant and have a fractal dimen-
sion i e(D) different from the Euclidean dimension
(d) of the space in which they are grown. To da e

t theoretical work has focused on the calcula-
tion of the fractal dimension. Although nume '-meri-
cal met o sh d 9 '2 have yielded well converged values
of D for several models, no systematic analytic
method of calculating this quantity has emerged.

One of the obstacles to theoretical progress is the
lack of understanding of the surface structure oe of the
growing clusters. Observing growth in various cir-
cumstances, one cae can easily recognize a characteris-
tic common to all growth processes, namely, that
there exists an "active" region, usually the outer
part of the surface, which collects practically all the
new partic es.

'
1 . This active zone moves outward an

leaves behind a frozen structure. Since the aim is
to derive the properties of the frozen bulk from the
d

'
1 equations describing the process andynamica

since the bulk is built in the active zone, clear y, e-
fort should be concentrated on characterizing an
understanding this region- of the cluster. Here, we
repor on art on an attempt to characterize the growing in-

ar-f in DLA and in the Eden process. In par-
ticular, we have carried out extensive Monte Car o

1 t' to calculate the probability P r,N r
shell ofthat the Nth particle is deposited within a she o

width dr at a distance r from the center of mass of

o.2o — P(r, N)
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FIG. 1. Probability of the Nth particle being attached
at a distance r rom er from the center of mass of the clusters in
DLA. The solid lines are Gaussian fits to the averages
over 200 clusters.

the (N —1)-particle cluster. Figure 1 shows
P( N) for DLA in d =2 for selected values of N.P r,
The solid lines are Gaussian fits of the form

(r rN )
(1)P (r,N) =

t&2
exp- '

and we see that the fit to the simulations is quite re-
markable. From this we conclude that the active
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zone of the cluster can be characterized by two
parameters, the mean deposition radius rz and the
width of the active zone g)vr It should be noted that
rz and gN can also be defined without any reference
to the actual form of P (r,N):

M
~w I x= ~w fw

Ml
(2)

where rz(i) is the deposition radius of the Nth par-
ticle in the ith cluster. We have obtained the same
values of r~ and gz for N ) 100 whether fitting a
Gaussian form or using Eqs. (2) and hence the fol-
lowing analysis of the scaling properties of r& and

is not biased by the Gaussian form (1) of
P (r,N).

The double-logarithmic plot of rq and ()v, calcu-
lated by averaging over 4000 clusters, is displayed
in Fig. 2. The simulation points fall on straight
lines at. least over the range 200 (N ( 2500 indi-
cating that the functional form is

0'w = foN". (3)

A least-squares fit of the data by these functions
produces the estimates v = 0.584 + 0.02 and
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FIG. 2. The mean deposition radius (r)() of the Nth
particle, the width of the active zone g~, and the radius
of gyration Rg(N) for DLA.
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v = 0.48+ 0.01.
Since rz describes the cluster expansion as the

particles are added, one expects that v is related to
the fractal dimension D of the frozen structure.
This expectation is confirmed by also plotting the
radius of gyration Rs(N) —N'~ in Fig. 2. The
curves rz and Rs(N) are parallel and we have
v = 1/D. This result can easily be obtained by calcu-
lating the density of particles at a distance r from
the center of mass

p(r N) =f d)d'P(r)rr'),
Sqr

(4)

where Sz is the surface area of a d-dimensional unit
sphere. In the limit N ~ and r large, one can
evaluate the integral (4) by the method of steepest
descent if the functional forms (3) are used. The
result is p(r, N = ~) —r "+'~" yielding the expect-
ed relationship v= 1/D. Note also that requiring
the density to be finite in the large-N yields v ~ v.
Our simulation results support the inequality, i.e.,
the growing clusters are characterized by two dis-
tinct lengths rN and g)v which scale differently.

The actual value of v is of importance since at
present there are several conjectures concerning the
interface of DLA clusters. Mean-field —type
theories of calculating D begin with an assump-
tion about the surface: the screening length which
can be identified with ())( is assumed to scale as p
or p

' implying v=vd —1 or v=(vd —1)/2. In
d = 2 this gives v = 0.18 or v = 0.09 in contrast to
our result v = 0.48. Recently, Sander' suggested
that there is only one diverging length scale in DLA
clusters which would mean g)v

—rN. Our results
seem to exclude the possibility v = v although
v —v = 0.1 is small and one must be cautious about
small differences obtained in Monte Carlo simula-
tions. Note, e.g. , that requiring P(r, N) to satisfy
Eq. (1) could introduce a bias against finding v = v.
Our analysis based on Eq. (2), however, does not
involve P (r,N) and is free from such bias.

We have also studied the two-dimensional Eden
model from the same point of view. Once again the
formula (1) is found to fit the probability P(r, N)
very accurately The fun.ctions rN, g)v, and Rs(N)
calculated from averages over 4000 clusters are
plotted in Fig. 3, and as in the case of DLA we find
r~ —N" and gN

—N" with v=0.495+0 005 and.
v = 0.18 + 0.03.

The Eden model is thought to be a space-filling
process in d=2 and one can calculate r~ and
Rs(N) under this assumption. One obtains in the
large-N limit rz = (N/m) ' and Rs(N) = (N/
2m)'~2. These functions are also displayed in Fig. 3



VOLUME 53, NUMBER 5 PHYSICAL REVIEW LETTERS 30 JULY 1984

100—

EDEN d = 2

10-

+ + +

p + ~ y++
+

+++++
+

~)+ +
+ +

+

1

100 1000
I I

5000

FIG. 3. The same as Fig. 2 but for the Eden clusters.
The two solid lines are (N/vr)'/' and (N/2')'/', respec-
tively.

and we see that the data points do approach these
curves for large N. As in the case of DLA our
results indicate that the growth process is governed
by two exponents v and v rather than one as has
been generally assumed. In the Eden model the
statistical uncertainties are larger and it seems to be
more difficult to reach the asymptotic regime.
Since there is evidence of downward curving in the
In/N vs lnN plot, we cannot rule out the possibility
that v = 0. Indeed, the functional form
(z ——0.14(lnN) ' +0.19 fits the data as well as for-
mula (2). Much larger simulations will be needed
to resolve this equation.

We now comment on the relation of our work to
previous Monte Carlo studies of surfaces of grow-
ing clusters.

(a) Peters er al. ' defined the width (dz) of the
surface layer for the Eden clusters through the mo-
ments of the derivative of the density profile
W(r, N) = —Bp(r, N)/Br. They studied clusters of
size N ~400 and obtained dz —N .5 whereas our
results would indicate d~ —

/III
—N '. We have

attempted to repeat their calculations and found
that it is difficult to get convergence for dN since

the derivative —Bp/Br is frequently negative as a
result of fluctuations in the regions where p = 0 or
p = l. If W (r,N) is set equal to zero whenever this
occurs (as it is done in Ref. 12), then one presum-
ably obtains an artificial contribution to dz which is
of the order of rz and rN indeed grows as N . Ac-
tually, W(r, N) can be expressed through the mo-
ments of p(r, N) and then the above difficulty does
not occur. In this way, stable estimates of dz can
be obtained and one finds that for large N, dz —

g/r
and the effective exponent of dN is significantly less
than 0.5 even in the range N ( 400.

(b) For DLA, Meakin and Witten'5 have studied
a quantity called the "interfacial mass. " This quan-
tity is defined as the number of new particles N;(N)
in contact with an existing cluster of N particles
when the growth process has been continued long
enough that N; (N) has reached its asymptotic
value. We do not see an obvious way of relating
N, (N) and g~. If N, (N) is assumed to be propor-
tional to the number of particles in the surface layer
(as is done in Ref. 15) then N;(N) —p(r~, N)
xrz 'g/I/ —N'+" +"—N for d =2 in contrast to
the Monte Carlo result' N, (N) —N

(c) Meakin's has also carried out studies of de-
posits which are similar to aggregates except that
the seed particle is replaced by a (d —1)-dimen-
sional plane of nucleation sites. Deposits can be
linked to aggregates by observing that (i) for large
rz the surface of an aggregate is indistinguishable
from that of a deposit, and (ii) the scaling variable
for aggregates is the number of particles in the clus-
ter (N) while for the deposits it is the number of
particles (N t) deposited on a unit of area, and thus
for large N, Nt —N/rz

On the basis of (i) and (ii) one can derive scaling
laws connecting the exponents of deposits to those
of aggregates. ' These scaling laws can also be ob-
tained on more general grounds and seem to be
satisfied within the accuracy limits of the Monte
Carlo simulations. '~' For our purposes (i) means
that the active zone of a deposit can be described by
a Gaussian form, while (ii) implies that the average
deposition distance from the plane of nucleation
sites scales as

x(Nt) Nt"I rN Nv Ntl/(D —d+ 1)

while the width of the active region behaves as

gt(Nt) —Nt —(/ —N" —Nt" /( + . (6)

Meakin' measured the average height h(Nt)
and the mean-square deviation ([Ah (Nt) ] ) of the
upper surface for diffusion-limited deposits in d = 2
and 3. These quantities are not exactly equal to
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x(Nt) and gt(Nt), but we believe that their scaling
properties should be the same, i.e., It (Nt)
—x (Nt) —Nt ' and

Meakin's estimates (v t = 1.45 + 0.05 and v t = 1.32
+0.08 for d =2 and v~=2. 1+0.1 and v&=1.8 for

d =3) indicate that if Eqs. (5) and (6) are correct
then v ( v for both d = 2 and 3 in accord with our
observation. Moreover, for d =2 Meakin's results
yield v=0.59+0.03 and v=0.54+0.07 which are
in reasonable agreement with our results, especially
if one takes into account that for deposits, the large
corrections to scaling make it difficult to obtain ac-
curate estimates of the exponents.

In summary, our results suggest that the presence
of the interface in growing clusters leads to the ex-
istence of two distinct diverging lengths. We be-
lieve that this is a quite, general feature of growing
systems and should be studied in more detail.
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