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Trapping of Random Walks in Two and Three Dimensions
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We introduce an exact enumeration method for calculating the survival probability P(n)
for the n-step random walker on a lattice with randomly distributed high-concentration traps,
c. Using it we show that our data scale as lnP (n) = a p, where p = [ —ln(1
—c) ]'t o+2lno to+'l, when p &10 in D =2 and D = 3 dimensions. This value of p corre-
sponds to P(n) & 10
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The statistics of the survival of random walks that
move in the presence of randomly distributed traps
has been studied recently by many investigators. '
The quantity most often analyzed is the survival
probability of an n-step random walk, which we
here denote by P (n). Donsker and Varadhan3 have
proved that in the limit, n = ~, P (n) satisfies

T 2/(D + 2)

lnP(n) = —a ln
1

n D/(D + 2)
1 —c

where a is a constant that depends on the lattice, c
is the trap concentration, and D is the dimension.
In the absence of any correction terms to Eq. (l)
(except in one dimension) it is impossible to say
how large n must be for the Donsker-Varadhan for-
mula to be a useful approximation. All previous
analyses of this question have relied on some form
of simulation, but so far there is no information
available on the range of validity of Eq. (1).
Klafter, Zumofen, and Blumen suggest that Eq.
(1) is valid only for P(n) (10 ' for D =2 and
Fixman7 sets the limit at P(n) (10 67 in D =3
dimensions. In this Letter we present evidence
suggesting that (for nearest-neighbor random
walks) Eq. (1) is a useful approximation when

p & 10, where p is the scaling function
& 2/(D + 2)

1p= ln
1 —c

nD/(D+2) (2)

appearing in the work of Donsker and Varadhan. 3

This value of p corresponds to a survival probability
equal to 10 ' in both D = 2 and D = 3 dimensions.

We further argue that pure simulation techniques
will always lead to an exponential decay at suffi-
ciently long times, rather than to the correct decay
given by the theoretically proven Eq. (1). Our evi-
dence for the new lower value of p [or higher value
of P (n) ] is based on two numerical techniques that
we have developed. The first of these techniques,
to be denoted by ERC (exact enumeration on ran-
dom configurations), has been described else-
where and is an exact calculation of survival prob-
abilities on sets of random trap configurations. The
second technique, denoted by EEC (exhaustive
enumeration of configurations) is an exact calcula-
tion of survival probabilities on an exhaustive set of
nontrapping regions. We have shown that ERC
reproduces the exponent D/(D + 2) = —,

' to a good

approximation in dimension D=1. Our second
method, EEC, to be described here, is practical for
high trap concentrations only (c & 0.9) and is com-
plimentary to ERC. No method is practical for
physically realistic trap concentrations, for example
c = 10 3, so that the extension of any of the
present results to these low concentrations must
rely on the existence of a scaling function similar to
that in Eq. (2). Whether a wider validity exists for
Eq. (1) than the limit established by this work is
still an open question.

The exhaustive enumeration of configurations
method. —In this technique we enumerate all con-
figurations of nontrapping sites and calculate exact-
ly the survival probabilities on these clusters. In
practice we have so far been limited to clusters of
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twelve or fewer nontrapping sites. A cluster is de-
fined to be a connected group of s nontrap sites sur-
rounded by l traps. The probability that a cluster is
characterized by the parameters s and l is (1 —c)'c'.
To calculate the survival probability on an (s, l)
cluster we must also take into account a connectivi-
ty index, which we denote by i, since there may be
different survival probabilities depending on the to-
pological configuration of the (s, l) cluster. Let
P,I;(n) be the probability of survival for at least n

steps on an (s, l) cluster characterized by connec-
tivity index i. Let X,I; be the multiplicity of such a
cluster. Then the average survival. probability is
given by
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P„,(n) = X, , a,P,", (5)

and can calculate the 2s parameters Ia, , P, ) from 2s
consecutive values of P,I; found by the exact
enumeration approach. The use of Eq. (3) also al-

lows us to perform an accurate check on the
number of configurations required for the calcula-
tions, since it is possible to check the convergence
as a function of this number. The value of P(n)
has converged when adding larger nontrap con-
figurations to the sum in Eq. (3) does not change
its value.

Results and discussion. —Figure 1 shows our
results for P (n) for D = 2 dimensions and different
trap concentrations. The results for c ) 0.9 were
generated by the EEC method described above,
while the data for lower concentrations were gen-
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For the relatively small clusters that we have dealt
with it is easy to enumerate the A.,i;. To find the
values of P,I; (n) one can use either a matrix ap-
proach or- the exact enumeration approach
described in Ref. 23. The matrix method requires
knowledge of the incidence matrix 3 whose jkth
element is 1 if sites j and k are nearest neighbors,
and 0 otherwise. Letting P,I, (j;n) be the joint prob-
ability of surviving till step n and being at site j at
that step, we have the recursion relation

P(j;n +1)= XkAikP(k;n),

where we have suppressed the subscripts sli. Thus,
P(j;n) can be expanded in a series of eigenfunc-
tions of the s x s matrix A. Since the coefficients in
such a series depend on the site j, which itself is of
no intrinsic interest, we effectively can sum over j
by using the relation

n

FIG. 1. Results for lnP (n) for different values of trap
concentrations c in D = 2 represented by different letters:
A for 1 —c =10 ~; 8 for 1 —c =10 ', C, D, and E for
1 —c =10 ', I' for c =07; G for c =0.5; 0 for c =04; J
for c =0.25; K for c =0.125. Points C represent results
obtained by the EEC and points E by the ERC method.
Points D represent results obtained by the EEC for large
numbers of steps, where Eq. (1) yields an exponential
decay.

crated by the ERC method, described in Ref. 23.
The results for c=0.9 were generated by both
methods. It is evident from Fig. 1 that there is a re-
gime (n & 10) for c ~0.9 in which the slope of
—lnP (n) is —, as predicted by Donsker and
Varadhan. In this regime Eq. (3) was found to
converge. However, for the larger step numbers
the slope must necessarily tend to 1 (see points D in
Fig. 1) as a result of the finite number of configura-
tions taken into account. The larger number of
steps require that more configurations are to be tak-
en into account to make Eq. (3) converge. This is
due to the necessity of using in Eq. (3) a finite,
rather than an infinite, number of configurations.
When the data for D = 2 are plotted as a function of
the parameter p = f [ —ln(1 —c) ]n) ' 2, they scale
nicely for p & 10 or P(n) & 10 ' . This is shown
in Fig. 2, where the indicated slope is equal to its
theoretically predicted value of 1. Similar results
are obtained for p & 10 and P (n) & 10 " in D = 3,
as sho~n in Fig. 3. Our results cannot yet be used
to say that for P (n) & 10 '3 (p & 10) the
Donsker-Varadhan result is not useful, since for
high concentrations, where we have exact results,
the lowest number of steps used, n =10, corre-
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FIG. 2. Results for lnP (n) for different values of trap
concentrations c in D = 2 dimensions (the points are
denoted as in Fig. 1 and also points M for 1 —c = 10
for 1 —c = 10, and L for 1 —c = 10 ) and step sizes n

plotted as a function of p = [ —ln(1 —c) 1'~'nv2
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FIG. 3. Results for lnP(n) for different values of trap
concentrations c in D = 3 dimensions (denoted as in Figs.
1 and 2) and step sizes n plotted as a function of
p= [ —in(1 —c)]2~5n3~5. The results plotted here have
been obtained by the EEC method.

sponds to p & 10. The scattering of the data for

p & 10 that was found in D = 1, 2, and 3 dimen-
sions seems to be due to corrections to the scaling
form of Eq. (1).

Limitation of lattice size is critical for recognizing
the Donsker-Varadhan regime in simulations.
When the maximum cluster size is fixed, Eq. (3)
indicates that the n ~ decay regime will be ex-
ponential in n, the largest eigenvalue P giving the
rate of approach of P (n) to 0. It has long been ap-
preciated that the fractional powers of n appearing
in the expression for lnP(n) are due to the rare
large nontrapping clusters. Our numerical tech-
niques allow us to estimate the minimum size of a
lattice needed to see the behavior of Eq. (1). For
example, in D = 2 dimensions all clusters of at least
s = 10 sites are needed for convergence for c =0.9
at step numbers n & 20. The probability of oc-
currence of such a cluster is = 10 ". For n & 20
steps one needs larger size clusters for convergence,
otherwise one sees a crossover to exponential de-
cay. Hence, in order to obtain good statistical en-
sembles in simulation, one would need a system of
= 10' sites which cannot be achieved by present-
day computers.

Indeed, careful study of the data in Fig. 1 shows
that for our ERC method (c & 0.9) we do not ob-
tain the asymptotic values of Eq. (1). We are able
to obtain only an effective expression exp( —an ),
where n = 0.7-0.8, instead of 0. = 0.5 in D = 2. It

seems that we see a crossover value for the ex-
ponent in agreement with Klafter, Zumofen, and
Blumen. A larger number of steps leads to higher
values for cx (indeed, u 1) as clearly found in our
enumerations. The reason for this behavior is the
absence of rare configurations in these small sys-
tems used in simulations as discussed above. How-
ever, since we expect all data to scale with p, we ar-

gue that for p &10, or P(n) & 10 ', the low-
concentration data in Fig. 1 should also behave as in
Eq. (1). Moreover, since for high concentrations
P (n) behaves as exp( —anD~D+ ) it cannot be that
the low-concentration survival probability will decay
faster than the high-concentration results. Thus,
we conclude that all concentrations results should
behave as Eq. (1) for p & 10.

Macroscopic systems are large enough to contain
the rare configurations that would produce the
behavior of Eq. (1). However, since at present
P(n) can be experimentally measured only to the
order of 10, it is unclear whether Donsker-
Varadhan sealing ean be seen in physical systems.
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