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New Electronic Levels in the Incommensurate Crystal Rb2ZnBr4

Th. Rasing
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The consequences of an incommensurate lattice modulation on the electronic energy levels
have been studied by optical transmission experiments on Rb2ZnBr4. The results show the
appearance of new energy levels and are analyzed with a simple tight-binding model in which
the superspace symmetry of the crystal is taken into account.

P-ACS numbers: 71.25.Cx, 61.50.Em, 64.70.—p

The absence of lattice translational symmetry in
incommensurate systems breaks down such funda-
mental concepts as Brillouin zones and Bloch elec-
trons. This can also lead to interesting new proper-
ties as have been observed in so-called charge-
density-wave systems. '

In this paper I consider the electronic band struc-
ture of a crystal with a modulated lattice and
present experimental evidence for the appearance
of new energy levels. I show how the superspace
approach, introduced to describe the microscopic
symmetries of incommensurate crystals, provides a
natural framework for understanding optical transi-
tions as well.

The incommensurate (1) phase of Rb2ZnBr4 ap-
pears below T;:—355 K and is characterized by an
orthorhombic basic structure with space group Pcmn
and a displacive modulation with wave vector
q =pc'=0.3c'. Single crystals were grown from
an aqueous solution and transmission spectra in the
band-gap region were recorded with a spectrometer.

Figure 1 shows the results for temperatures
above and below T;; the spectra have been shifted
with respect to each other to correct for the tem-
perature dependence of the main gap Eg. In the I
phase ( T ( T; ) a new absorption edge appears
below the main gap at Eg which shifts in energy and
becomes stronger with decreasing temperature.

Since the crystal is modulated along one crystallo-
graphic axis only, we will use a one-dimensional
model to understand the basic features induced by
this modulation.

In the tight-binding approximation, the Schro-
dinger equation for a linear chain with states ~Q„)
localized on the nth atom can be written as

W'„+ t C„+t + W'„C„+t + (E„—E )C„=O,

where C„are the coefficients of the eigenfunctions
~Q & = QC„~Q„&, E„are the atomic energy lev-

els, and 8'„represent the nearest-neighbor interac-
tion terms. As a consequence of the lattice modula-
tion the W„(which depend on the overlap intergals

between neighboring atoms) will become modulat-
ed as well. For the case of a simple sinusoidal
modulation we will have

W„= Wo[ 1 +P cos(qna + P) ]. (2)

Here a is the lattice constant of the undistorted
chain, q the modulation wave vector, and $ a phase
factor. The parameter P will depend on the modu-
lation amplitude and is zero in the normal (N)
phase. For an incommensurate modulation 27r/q is
irrational with respect to a and Eq. (1) does not
have lattice symmetry. However, 8'„ is invariant
under the following set of discrete transformations:

n n + m, $ $ —qma, integer m;

n n, @~ p+2mz, integer z.

These translations form a (1+1)-dimensional lat-
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FIG. 1. Transmission spectra of Rb2ZnBr4 in the re-
gion of the band gap Eg (defined by extrapolating to zero
transmission), sho~ing the appearance of a new absorp-
tion edge (Eg) in the I phase (T ( T;) The horizontal.
axis refers to spectrum 1; spectra 2—4 are shifted to have
their E~ overlap.
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tice in the superspace that can be formed by the
normal space and an additional defined internal
space. 2 4 This means that Eq. (1) does have a hid-
den two-dimensional lattice symmetry, with all the
coefficients depending on n and the internal param-
eter 7 ( = P): W„= 8'(n, r), etc. This also implies
that the wave vectors k still form a valid representa-
tion for the electron wave functions. 5 Therefore,
we can again apply the Bloch theorem and hence
the solutions are of the form

C(n, r) =e'""'u(qna +r),
ikna v i v(qna + ~)

(4a)

(4b)

The Fourier expansion of Eq. (4b) is a result of the
periodicity in r. Inserting Eqs. (4) and (2) in Eq.
(1) and taking terms with the same factor e'"' leads
to an infinite set of coupled equations of the form

A„u" '+D„u" +B„u"+t=0, integer v, (5)

where A, D, and 8 are functions of k, E„, 8'„, and
the modulation parameters. From Eq. (5) the new
energy levels in the I phase can be calculated. In
first-order approximation, with neglect of the cou-
pling between different Fourier coefficients v' & v,
this gives

E„"(k) =E„+2 Wp cos(k + vq ), integer v. (6)

Equation (6) indicates that in the I phase each origi-
nal level labeled by n splits up into a series of levels
labeled by the index v, but it neglects their interac-
tions. For a more realistic calculation one has to
take the coupling between v and v' & v into ac-
count, and since to a good approximation the
modulation is sinusoidal the main levels will be
v = 0 and v = + 1. Though this can be solved exact-
ly, the complete results cannot be given in a simple
analytical expression in k and will be treated else-
where. However, for some k values one can get
approximate solutions; e.g. , at k = 0

'II o 1+cosqE„'(0)= E„+2+,+
2 1 —cosq

' ~'o 1+cosq
1-cosq '

E„'(0)=E„+28' casoq,

whereas for k =q/2 terms linear in P are present.
For the v = + 1 levels extrema appear at k = q and
k = E —q (where K is the Brillouin zone wave vec-
tor) having a P2 dependence for P )) 0.

These results hold for the valence (E„) as well as
the conduction band (E,). We therefore expect ab-

sorption edges to appear at

E ~E,"(k) —E„" (k') for v, v'=0, +1. (8)

The values for k and k' are given by the extrema of
the conduction and valence bands and depend on
the real band structure of the crystal. However,
without knowing the latter in detail, the present
simple model can give us a qualitative understand-
ing of the experimental results.

In the N phase, the only meaningful levels are
the v = v' = 0, leading to the main absorption gap
Eg Eo(k——) —E„(k') which causes the drop in
transmission around 5 eV in Fig. 1. In the I phase,
additional absorption can occur involving v, v
= + 1, causing the onset of additional absorption at
Eg [see Fig. 1; experimentally, Es has been deter-
mined as the energy for which the transmission
drops below that of the normal spectrum (at T
= T, + 3 K), with a maximum error of 0.02 eV].
The transition probability for these levels will be a
measure of the modulation strength. Therefore, if
we write for the absorption coefficient o. '= o."+4o, ,
where i and n refer to the I and N phases, respec-
tively, Ao. should be proportional to P. The experi-
mental results for An are plotted in Fig. 2 and can
be fitted by b n = a (T, —T) ' 2 with a = 0.087 cm
K ' and T; =357+1 K.

From our numerical results for E„'(k) it follows
that this new absorption edge involves k = q and
k =E —q, and that Eg —Eg is almost constant for
P ( 0.3 and is proportional to P for P ) 0.3.
Therefore, we expect Es —Es —T, —T (for
R12ZnBr4 the temperature dependence of q can be
neglected in the region of interest). The tempera-
ture dependence of Es —Eg is plotted in Fig. 3(a)
and is in good agreement with these predictions.
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FIG. 2. Temperature dependence of absorption in-
crease hu (for a fixed value of Eg —E,') in the I phase.

389



VOLUME 53, NUMBER 4 PHYSICAL REVIEW LETTERS 23 JULY 1984

0.8

& 0.7

LZ
I

CP
LIJ

0.6

5.3

(D

CP
w 5p—

580
I I

540
T (K}

FIG. 3. (a) Temperature dependence of new absorp-
tion edge Eg relative to that of Eg (b) Tem. perature
dependence of main gap E~ in the N and I phases. The
solid lines show the linear fits.

new absorption levels in an incommensurate crys-
tal. I have shown how the superspace approach
leads to a generalization of the Bloch theorem and
can be used to solve a simple tight-binding model
for electrons in an incommensurate potential. The
temperature dependence of the extra absorption in-
dicates that the density of states involved in these
transitions increases roughly linearly with the
modulation potential whereas the energy levels
themselves shift with the square of this as a result
of the effect of the modulation on the interaction
between localized atomic levels.
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In the I phase the v = 0 levels are still good solu-
tions but will be perturbed via the parameter p.
This means for the main gap that

Eg = Eg" + pF +p'6, (9)

where the constants F and G will depend on the ac-
tual band structure. The experimental results are
plotted in Fig. 3(b) and show qualitative agreement.
For T « T; the original linear T dependence of Eg
has been increased by a linear term, indicating
F « G. However, close to T; the data cannot be
fitted with two constants F and 6 only, presumably
because of additional effects due to soft lattice
modes.

In conclusion, I have observed the appearance of
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