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The equation of state of nuclear matter is predicted in analogy with a universal form re-
cently observed to hold for other self-bound systems. This approach was suggested by two
findings. First, the spin-isospin-averaged realistic nucleon-nucleon interaction potential is
observed to be of the universal form in the region of strong bonding. Secondly, a resulting
relation between the cohesive and surface energy is shown to hold for nuclear matter as well
as metals and the electron-hole liquid.

PACS numbers: 21.65.+f, 64.10.+h

The equation of state of nuclear matter is the
subject of much current interest. ' Since different
many-body methods yield different results, to date
no firm predictions are available even for zero tem-
peratures.

In such situations the use of analogies with other
areas of physics can be fruitful. It has been suggest-
ed that the interaction potential for two nucleons
is similar to the binding-energy —distance relation of
diatomic molecules. Recently it has been shown
that the binding-energy versus separation relations
for some self-bound systems such as diatomic
molecules and metals have a universal shape.
Consequently, the experimentally measured zero-
temperature equation of state of metals can be
predicted in the absence of phase transitions from
the equilibrium values of the interactomic spacing,
the binding energy per atom, and the compressibili-
ty. The analogous physical quantities are known
reasonably well for nuclear matter. Assuming that
the "shape" of the energy versus interparticle-
separation relation is of the universal form for nu-
clear matter, we predict the equation of state using
the equilibrium values described above.

The existence of a universal binding-energy-
distance relation was illustrated in Ref. 4. There it
was shown for (1) metallic cohesion, (2) metallic
adhesion, (3) chemisorption of gas atoms on metal
surfaces, and (4) the binding of some diatomic
molecules that the total binding energy per particle
can be written as

E(a) = SEE'(a').

Here AE is the equilibrium binding energy and a is
the coordinate describing the separation of the con-
stituents (e.g. , the distance between the two nuclei
of a diatomic molecule). The scaled coordinate a"
is given by a' = (a —ao)/l. Here ao is the equilibri-
um spacing while I is a length scale. E'(a') is a
scaled function chosen to have E'(a'=0) = —1
and E""(a'=0)=1. E'(a") describes the shape of
the universal binding-energy relation.

Since E'(a') represents a quite general scaled
form for the binding-energy relation in molecules
and solids, it is of some interest to see if it can be
related to the binding of nuclear matter. Recently
Wiringa, Smith, and Ainsworth have empirically fit
nucleon-nucleon data and have obtained a simple
potential which yields a high-quality description of
deuteron properties and nucleon-nucleon phase
shifts below 330 MeV. We average the spin-iso-
spin-dependent s- and p-wave components to ob-
tain a form we call v&4 which should be representa-
tive for nuclear matter (a spin-isospin saturated sys-
tem) at moderate density. After scaling the ut4 po-
tential we plot the result as the curve on Fig. 1.
For reference we have included scaled binding-
energy relations for the H2+ molecule, the Al-Zn in-
terface, and the bulk solid Mo. These are typical
examples of systems that have been shown to exhi-
bit universal behavior. We see that in the region of
strong binding the v~4 potential is virtually indistin-
guishable from the universal binding-energy rela-
tion. Thus there is a quantitatively accurate relation-
ship between the binding energy versus atomic
spacing in some metals and molecules and this form
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FIG. 2. The predicted surface-energy (a) -cohesive-
energy (AE) relation from Eq. (2) is plotted as the solid
line. Experimental results for various materials are plot-
ted. The electron-hole-liquid values are obtained from
Refs. 9 and 10, the nuclear values from Ref. 7, and the
bulk metal values from Ref. 4.

of the nucleon-nucleon potential.
For metals the scaled form of the binding-

energy-separation relation can be connected to
both surface energy 0- and the bulk cohesive energy
AE. This leads to the relation

4mr p cr = 0.823E. (2)

The equilibrium (Wigner-Seitz) radius of a sphere
containing one atom in the bulk solid is denoted by
r p. Given the result in Fig. 1 it is of interest to see
if Eq. (2) also holds for nuclear matter. We take
parameters for nuclear matter from the mass formu-
la.7 The relevant terms are

= (16+4mR2o/A +. . .) MeV

=(16+182 ' +. . .) MeV.

Here R is the radius of the nucleus if we assume a
constant value of the density corresponding to the
saturation limit for nuclear matter and 3 is the mass
number. The radius of a sphere containing one nu-
cleon, rp, is also taken from the saturation limit and
is given explicitly below.

Figure 2 shows a plot of 4rrrp v vs AEfor (1) nu-
clear matter, (2) several representative metals, and
(3) the electron-hole-liquid in Si and Ge. The

FIG. 1. Comparison of a scaled two-nucleon potential,
referred to as v&4 in the text (Ref. 5) with scaled
binding-energy relations for the molecule H2+, the bulk
metal Mo, and the bimetallic interface Al-Zn. The scal-
ing is described in the text.

AE
d E/dr i,,

=0.30 fm. (3)

What can one predict from this conjecture for

agreement with Eq. (2) over 9 orders of magnitude
in energy (and —21 orders of magnitude in densi-
ty, i.e., 10'7 vs 103s particles/cm3) is striking. Sur-
face energies for the electron-hole liquid were taken
from the theoretical calculations of Shore and co-
workers. ' Their values are in good agreement
with experiment for Ge," and consistent with scat-
tered experimental results for Si.' " A relation
similar to Eq. (2) describes the curvature energy,
E„ofnuclear matter and the electron-hole liquid.
The curvature energy is functionally of the form
E, —0.76'�' . The constant was found by fitting
to the electron-hole liquid results of Ref. 11. The
scaled relation predicts that E, —12 MeV A ' for
nuclear matter, in good agreement with the many-
body calculations of Negele and Vautherin.

We therefore conjecture that the binding eriergy
per nucleon in nuclear matter can be represented by
Eq. (1). Then the entire equation of state at zero
temperature in the absence of phase transitions can
be predicted given the equilibrium values of the
binding energy, 4E, the compressibility, E, and the
Wigner-Seitz radius (internucleon separation), r p.
We choose AE =16 MeVlnucleon, E =220+10
MeV, and rp=1.12 fm. Here E=rpd E/dr ~,,
The length scale I for nuclear matter is defined (see
Ref. 4) by
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E(a). Basically, if given the harmonic properties,
the entire relation is given, including the anhar-
monic properties.

The zero-temperature equation of state is given
by P(V) = —AE[E"'(a")/4rrlr2] Here the vol-
ume per nucleon is denoted by V =47rr /3 U. sing
the simple, approximate form for E'(a')
= —(1+a")e ",'3 we find the binding-energy-
volume relation shown in Fig. 3. The left-hand side
of the curve represents the region of large positive
pressure. The right-hand side represents the effects
of a negative hydrostatic pressure. There is a max-
imum negative hydrostatic pressure which nuclear
matter can sustain at zero temperature (correspond-
ing to the inflection point in the energy-volume re-
lation) . Our results yield a rupture pressure,
P, ——1 MeV/fm. Similarly, there is a lowest
density for which nuclear matter is stable under
negative hydrostatic pressure, the number density
being —60% of the saturation density.

Numerous parametrizations have been proposed
for the nuclear-matter equation of state'4 which as-
sume a power series in the density with a small
number of terms. In Fig. 3 we present for compar-
ison such an energy per nucleon (E) curve

I/3

E= Xa, (4)
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FIG. 3. Conjectured zero-temperature binding-energy
relation for nuclear matter (solid line) and a conventional
power-series form (Ref. 14) (dashed line). The universal
binding-energy relation, E"(a")= —(1+a )e ", of
Ref. 4 is combined with Eq. (1) and the following nuclear
matter data to make this prediction: AE = 16 MeV,
ra=1.12 fm, and I =0.3 fm.

in the form proposed in Ref. 14. Here no is the
saturation density (0.170 nucleon/fm ) and the
four coefficients are given by our choices of
nuclear-matter saturation properties (see above)
and the requirement of Fermi-gas behavior at low
density. These conditions yield a2= 23.04 MeV, a3
= —119.12 MeV, a4=89.12 MeV, and a5= —9.04
MeV. In the range of densities with which we are
concerned the unacceptable high-density behavior
is not relevant. It should be noted that at low tem-
peratures including absolute zero, a liquid-phase
equation of state will not connect at low densities
with ideal Fermi-gas behavior. While the proposed
form of Ref. 14 expressed here in Eq. (4) is there-
fore flawed, we include it in Fig. 3 because it is
representative of a number of power-series forms
currently in use in nuclear physics.

Using our equation of state we may estimate the
critical density n, and temperature T, of the liquid-
to-gas phase transition in nuclear matter. To make
these estimates we assume, as in Ref. 14, that the
entropy of nuclear matter is that of a noninteracting
degenerate Fermi gas. With this we can evalute the
pressure as a function of density and temperature
and look for the critical point. This leads to the
equation of state for T ~ T„

1/3
AE 3

n a e
3l 4m .~/3 m+ "

, (bT)' —(s).
In this expression m is the nucleon mass and
b = 1.809 for nuclear matter. We obtain a T, = 20.5
MeV and n, =0.33no. This critical temperature is
somewhat higher and the critical density is some-
what lower than most predictions. ' Experimental
information on these quantities is not yet available.

The results of Figs. 1 and 2 lead one to examine
the features common to nuclear matter, metals, and
the electron-hole liquid. At least three features are
common: (1) Nucleons, electrons, and holes are all
fermions. The Pauli exclusion principle has a direct
effect on energy levels and allows for exchange in-
teractions. (2) The forces in these systems are ef-
fectively of an exponential nature. (3) Long-range
unscreened interactions must be negligible or ac-
counted for explicitly. Nuclear forces tend to satu-
rate at short distances as do screened Coulombic in-
teractions in metals and some molecules.

Nuclear matter will not exhibit the rich structur-
ally rigid behavior shown by other self-bound atom-
ic systems such as solids and molecules. Rather,
the nucleus is more comparable to a liquid metal
(especially an electron-hole liquid) since the nu-

346



VOLUME 53, NUMBER 4 PHYSICAL REVIEW LETTERS 23 JULY 1984

cleons are free to move over distances comparable
to the dimensions of the nucleus. The energy
difference between liquid and solid metal is very
small compared to the binding energy. Continuing
our analogy, we do not expect the liquid nature of
the nucleus to cause a large change in the expected
equation of state. In the preceding development we
have ignored Coulombic interactions within the nu-
cleus. In the application of our results to finite nu-
clei they (as well as surface, asymmetry, and other
contributions) must be included explicitly.

Palmer and Anderson have made empirical
correspondence between molecules and nuclear
matter. While their two-body potential was deter-
mined in an ad hoc fashion, the spirit of our ap-
proach of relating binding energies of solids to nu-
clear energetics is consistent with their thesis. We
see now that the universal binding-energy relation
obviates the need for an ad hoc two-body potential.

In conclusion we have shown that the partial-
wave-averaged realistic nucleon-nucleon potential
of Wiringa et al. 5 over the region of strong binding
can be scaled to the form of the universal binding-
energy relation recently discovered for solids. Con-
sequently it was supposed that the surface and
cohesive energies of nuclei could be related as in
metals and the electron-hole liquid. This supposi-
tion was demonstrated to be correct. We have pro-
posed a form for the zero-temperature equation of
state of nuclear matter in the absence of phase tran-
sitions. A prediction is made for both the density
and pressure of nuclear matter when it ruptures
under a negative hydrostatic load. Finally, as com-
pared to other postulated equations of state for nu-
clear matter, ' which have power-law shapes, ours
has an exponential form.
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