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Solving the Strong CP Problem without the Peccei-Quinn Symmetry
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A simple theorem is proved about the 0 parameter in grand unified models with spontane-
ous CP symmetry breaking. This theorem states two conditions on such models which, if
fulfilled, imply that 0 is zero at tree level. Models which fulfill these conditions are generali-
zations of a recent model of Nelson and are easy to construct.
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There are two currently viable approaches to
solving the strong CP problem. The more familiar
is the Peccei-Quinn mechanism. ' In recent years
Peccei-Quinn models have been studied consider-
ably. This has led to the formulation of "invisible
axion" models with the concomitant astrophysical

problems. Though these problems are surmount-
able4 it is worth studying the alternative to Peccei-
Quinn models. In this other approach to the strong
CP problem, CP invariance is imposed as a sym-
metry of the Lagrangian but is broken spontaneous-
ly. Thus, before symmetry breaking HQCD 0. It is
necessary to impose additional symmetries on the
theory to insure that the detM~ is real at tree level.
Mg is the quark mass matrix. Arg[detM0] is
sometimes called OQFD ~ Several models of this type
exist in the literature. 5 All of them appear con-
trived in comparison with, say, the Peccei-Quinn

models. Also it has been found to be difficult to
construct grand unified models based on this ap-
proach. (It is desirable to have such models unified
because the domain walls that result from spontane-
ous CP symmetry breaking could be removed by in-
flation were the CP symmetry breaking to occur at
grand-unified-theory scales. ) Recently, however, a
quite elegant and comparitively simple model has

been proposed by Nelson. 7 In this note I wish to
state a theorem which gives a set of sufficient con-
ditions for constructing such models. The condi-
tions are few and simple and are satisfied by
Nelson's model. This theorem thus reveals the
essential features of her model, which allow it to be

easily generalized.
Theorem. —Let us consider a model in which CP

invariance is a symmetry of the Lagrangian but is
spontaneously broken. Suppose that in this model
the fermions may be classified in two sets: F con-
sisting of fermions with the same SU(3) 8 SU(2)
8 U(1) quantum numbers as nf ordinary light

families [for example in an SO(10) model they
would be nf 16's], and R consisting of a real set of
representations of SU(3) 8 SU(2) 8 U(1). (R
may contain complex representations as long as it
contains an equal number of conjugate representa-
tions. ) Then &=—&Qcn+HQFQ will be zero at tree
level if two conditions are satisfied: (1)
SU(2) 8 U(1)-breaking vacuum expectation
values (VEV's) appear only in F FYukawa ter-ms,
not in F-R or R-R terms. (2) CP-nonconserving
VEV's appear only in F RYukawa -(or mass)
terms, not in F-For R-R terms.

Proof. We will first e—xamine the mass matrix
M of the charge ——,

' quarks, q, and the charge
+ —,

' antiquarks, q' . The q that belong to F will

have SU(2) 8 U(1) quantum numbers ( ——,',
+ —,'), where the first number is the third com-
ponent of weak isospin, I3, and the second number
is the weak hypercharge, —,

'
K Q=I3+ —,

'
Y. The

q' belonging to F have quantum numbers (0,—,
' ).

By condition (1) the q in R that mix in the mass
matrix with the q in Fhave the quantum numbers
( ——,', + —,') or (0, ——,'). And the q' in R that
mix with the q' in F have the quantum numbers
( —,', ——,

' ) or (0,—,
' ). Thus we may represent M at

I tree level schematically by

q M q'

((0, 0)) „,,

((-,', --,')),, , ((0, 0)),,
0 ((0, 0)) t,

0

1 t )(tt)

(0 t ) (tt)
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The indices i and i' run from 1 to nf. The index j'
runs over the same number of values as j because R
is a real set of representations. Thus ((0, 0) ) „, is a

JJ
square matrix. For the same reason ((0, 0) ) is

also a square matrix. We have denoted VEV's or
bare mass terms by their SU(2) 8 U(1) quantum
numbers in an obvious notation. The zeroes in
M a are explained by condition (1). They appear
in F-R or R -R terms that would violate
SU(2) 8 U(1). By condition (2) CPnonconserva-
tion only appears in the ((0,0)), and ((0,0)) „.,
terms that couple F and R. But these CP noncon-
serving terms do not contribute to detM as we
now easily show. Consider the jth rows of M(a).
The only nonvanishing entries are in ((0,0))

JJ
To get a nonvanishing contribution to detM we,

q+M+ q+(o} c

need one entry from each row of ((0,0)) „,.
JJ

since this is a square matrix we will then have an
entry from every column of ((0,0)), as well.

JJ
Thus all the entries from the j'th columns of M~

come from ((0,0)), and therefore not from
JJ

((0,0)) . Similarly we need an entry from each

column (and thus each row) of ((0,0)) kk, . Hence

no entries of ((0,0))„,, contribute to detM(a).

Therefore detM does not contain any CP-
nonconserving phase at tree level.

A parallel argument applies to the mass matrix,

M+, of the charge —,
' quarks, q+, and the charge

3 antiquarks, q + ~ In the same notation as be-

fore we may write, schematically, M+ at tree level
by

E1

0

((0,0))„,,

((0,0)),,
((0,0))„,

(p 2)(F)

J
p 2 )(R)

Repeating the above arguments one can show that
detM+ does not contain any CP-nonconserving
phase at tree level.

Finally one must consider color nonsinglet fer-
mions which do not mix with the "family quarks"
in F. These may have other charges than + —,

' and
+

3 other colors than 3 and 3', or be in other than
singlets or doublets of weak isospin. Since [by con-
dition (1)] these are purely in R, we see immediate-
ly [by condition (2)] that the mass matrix of these
quarks at tree level has no CP nonconservation.

We have shown that OQFn arg[detM0] is zero at
tree level. OQcD is zero at tree level trivially since
W is CP conserving. So the theorem is proved.

Though this theorem does not depend on wheth-
er the model is or is not grand unified, grand unifi-
cation is the natural framework in which to apply it.
One would expect in such a unified model, by
Georgi's "survival hypothesis, " that the light fer-
mions will consist of nf ordinary families, the other
fermions acquiring superheavy masses of order the
unification scale. One might wonder how the ordi-
nary weak-interaction CP-nonconservation effects
observed in the kaon system arise. The CP-
nonconserving VEV's that connect F fermions to R
fermions insure that the light families of fermions
are linear combinations of Fand R with coefficients
that contain CP-nonconserving phases. Thus at low
energies, ~here the heavy fermions decouple, it ap-
pears that the SU(2) 8 U(1)-breaking, Weinberg-
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Salam Higgs scalar(s) couple to the light fermions
with complex Yukawa couplings. This will lead to
complex light-quark mass matrices and to CP non-
conservation in the weak interactions via the usual
Cabibbo-Kobayashi-Maskawa mechanism. For an
example the reader is referred to Ref. 7. We now
will outline two examples of models fulfilling the
conditions of our theorem. One is the SU(5) exam-
ple of Ref. 7. The other is an SO(10) example.

Examptes. —An example of this theorem is the
simple model of Nelson. 7 That model has an
SU(5) 8 SO(3)o(,b,(x CP symmetry as well as
other global symmetries. The F fermions
are (10,3)L+ (5', 3)L, while the R fermions
are (10, 1)L + (10",1)L, + (5', 1)L + (5, 1)L. The
scalars are in (24, 3)H, (1,3)H, and (5, 1)H
representations. The SU(2) 8 U(1)-breaking
masses arise from (10,3)I (5', 3)I. (5, 1)H and
(10,3)L (10,3)L (5, 1)H Yukawa terms. Condition
(1) is satisfied because global symmetries prevent
(10, 1)I (5', 1)I (5, 1)' and other similar
SU(2) 8 U(1)-breaking R-R terms from appear-
ing in this model. Condition (2) is satisfied because
CP nonconservation is arranged only to come from
the VEV's of the (1,3)H scalars. These only couple
F to R. Thus at tree level this model has no strong
CP nonconservation.

It is simple to construct such models based on
larger groups than SU(5). Suppose we have an
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SO(10) model. For the fermions in F we could
choose three (or in general nJ) 16I's. For R we
could choose for example any number of 10's, 45's,
120's, (16+16")'s, that is, any real representa-
tions. Let us choose 126z + 126z. For the scalars
let us make the usual choice of 10&, 16&, and ~45 .
Let us suppose that nonvanishing VEV's develop
for components in the 1(16), 1(45), 5(10), and

5'(10) [where the first number is an SU(5)
representation and the number in parenthesis is an
SO(10) representation]. Condition (1) is satisfied
for example if 5'(16) does not develop a nonvan-
ishing VEV, as there are no 16z126z10~ or
126z126z10& couplings. If we have violated CP
conservation only by the VEV's of the 1(16) then
condition (2) would be satisfied as well. The matrix
M would, schematically, look like

q M' 'q' = (10(16),. 10(126) 5(126"))

r

(5'(10)) (1(16)), 0

0 M 0 10'(126") .
(1(16)),, 0 M 5'(126)

t

Note that the zeroes here result because we have no
Higgs representations which are in the products
16 8 126 and 126 (3 126. This is only an example.
It should be obvious that a huge variety of groups,
representations, and coupling and breaking schemes
are possible within the framework of the conditions
of the theorem.

%e have only shown that the tree-level mass ma-
trix of the colored fermions, M~, has real deter-
minant. At one-loop level one would expect that a
CP-nonconserving phase would appear in detM&.
The value of the phase is somewhat model depen-
dent. Generally 50 from one-loop corrections to
M0 goes like (f /16m ) x (phase) where f is some
typical Yukawa coupling, or equivalently a ratio of a
fermion mass to a VEV. Since Yukawa couplings
can naturally be (and generally seem to be) rather
small, one can have 0 small enough to be consistent
with present bounds without much difficulty.

The models in Ref. 5 tend to have difficulties
with Higgs-mediated flavor-changing neutral
currents unless the neutral Higgs masses are greater
than about 200 GeV. In these models spontaneous
CP nonconservation arises from nonzero relative
phases of the VEV's of several light SU(2)
8 U(1)-breaking Higgs scalars which contribute to
M0. Because more than one light Higgs contributes
to M~ it happens that diagonalizing M0 does not di-
agonalize, in general, the neutral Higgs couplings.
However in models constructed along the lines sug-
gested by our theorem this problem is less pressing.
CP nonconservation occurs in the SU(2) S U(1)-
singlet VEV's. It is thus not necessary to have a
nonminimal light Higgs structure. It is well known
that a minimal light Higgs structure will not in gen-
eral give rise to unacceptably large Higgs-mediated
flavor-changing neutral currents.

In conclusion, I would like to stress that there is a

fairly simple class of unified models which solve the
strong CP problem. They seem, from the stand-
point of simplicity, competitive with the Peccei-
Quinn models. Nelson's model7 is the first of this
type to be discovered but I wish to emphasize that
an entire class of such models —satisfying fairly un-
restrictive conditions —exists. It is probably possi-
ble to even loosen these conditions somewhat. It
also should be emphasized that it is not necessary to
have global symmetries (other than CP invariance)
in these models.
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